Радиатор отопления биметаллический как подключить: Схемы подключения биметаллических радиаторов отопления: нижняя, боковая, диагональная

By alexxlab No comments

Содержание

Схемы подключения биметаллических радиаторов отопления: нижняя, боковая, диагональная

Схемы подключения биметаллических радиаторов отопления фактически не имеют отличий от стандартных способов установки других видов отопительных батарей, например, чугунных. Вне зависимости от того, планируете ли вы выполнить работы самостоятельно или обратиться за помощью к профессионалам, стоит изначально продумать, какую именно схему выбрать и почему.

Первое, о чем стоит знать — существует три схемы подключения биметаллических радиаторов отопления:

  • Боковое.
  • Диагональное.
  • Нижнее.

Если вы хотите выполнить подключение биметаллических радиаторов отопления оптимальным способом, то есть так, чтобы трудозатраты были минимальны, а эффективность приборов максимальна, то при определении подходящей схемы нужно ориентироваться на следующие параметры:

  • Тип системы: одно- или двухтрубная.
  • Как происходит подача теплоносителя: снизу или сверху.
  • Число секций в радиаторе.

Выбор способа подключения в зависимости от типа системы

Выделяют два типа систем: одно- и двухтрубные. В первом случае теплоноситель проходит по подающей трубе к отопительным приборам, при этом по мере движения он остывает. В однотрубных схемах радиаторы монтируются последовательно. Фактически при такой схеме подающий трубопровод «превращается» в обратный. В двухтрубных системах применяется параллельное подключение биметаллических радиаторов отопления: подающая и обратная ветки полностью «автономны» друг от друга, а соединяются они с помощью конечного прибора системы отопления.

Все выпускаемые сегодня биметаллические радиаторы отопления унифицированы под любое подключение, в их конструкции предусмотрено 4 возможные точки подключения, то есть пара снизу и пара сверху. Поэтому выбирать схему нужно, ориентируясь на тип дома, его этажность, тип системы.

Особенности одно- и двухтрубных систем

Помните о том, что:

  • Однотрубные системы могут быть с горизонтальной или вертикальной разводкой. Первая, как правило, применяется в частных домах высотой в 1 или 2 этажа, в исключительных случаях — в трехэтажных. Вертикальная разводка типична для многоэтажных объектов. Преимуществом однотрубных систем является то, что их устройство требует минимальных финансовых затрат, и при этом они отличаются стабильностью (то есть разбалансировать такие системы непросто).
  • Двухтрубные системы редко эксплуатируются в «многоэтажках». Это обусловлено тем, что для создания такой системы требуется большее число труб, также в обязательном порядке необходимо применение регулирующей арматуры. Впрочем, у нее есть существенное преимущество — на все радиаторы отопления подается теплоноситель одинаковой температуры, а значит, во всех помещениях будет одинаково тепло.

Направление подачи теплоносителя

Подключение биметаллического радиатора отопления может быть выполнено снизу — в данном случае используется нижний вертикальный коллектор. При использовании такой схемы главное точно знать, к какому именно из входов подключается вода. Эти данные можно уточнить в техническом паспорте.

Также возможна боковая и диагональная подводка. В последних двух вариантах подключения биметаллических радиаторов отопления, подача теплоносителя заводится сверху, при этом снизу устанавливается труба обратного трубопровода.

Как определить оптимальную схему подключения в зависимости от числа секций?

Число секций биметаллического радиатора отопления напрямую влияет на выбор схемы подключения. Например, для моделей, имеющих до 8 секций, оптимальным будет боковое, диагональное или нижнее седельное подключение. Если количество секций биметаллического радиатора отопления больше 8-ми, то стоит выбирать диагональную схему подключения.

Впрочем, есть некоторые хитрости, которые позволяют и радиаторы с 9, 10 и более секциями подключать боковым способом. Для этого необходимо использовать так называемый удлинитель потока.

Что такое удлинитель потока и как правильно его устанавливать?

Удлинителем потока называют трубку, вставляемую в коллектор подачи. Целесообразно использовать это приспособление, если при боковом подключении горячими оказываются исключительно первые секции биметаллического радиатора отопления, а остальные остаются чуть теплыми.

При использовании удлинителя потока удается обеспечить условия, при которых теплоноситель будет подаваться не ко входу устройства, а чуть дальше (условно — в центральную часть), за счет этого и обеспечивается более равномерный прогрев поверхностей всех секций радиатора.

Если при подключении биметаллического радиатора отопления вы решили использовать удлинитель потока, то важно знать о том, какая длина приспособления будет оптимальной. Этот параметр определяется в зависимости от числа секций. Фактически вариантов два:

  • Удлинитель должен составлять 2/3 от общей длины радиатора.
  • Длина удлинителя должна быть такой, чтобы он доставал до средней части последней секции.

При этом выбирать вариант нужно методом экспериментов. Например, в некоторых случаях удлинитель, достающий до середины последней секции, не позволяет первым секциям прогреваться до той же степени, что и последним. Если вы столкнулись с такой ситуацией — не стоит переживать, ведь проблема решается просто: достаточно просто укоротить трубку. Эксперты советуют всегда приобретать удлинитель «с запасом», чтобы при необходимости его можно было укоротить: очевидно, что со слишком коротким приспособлением сделать уже будет ничего нельзя. А то, какой именно вариант подойдет (на 2/3 или до середины последней секции), напрямую зависит от диаметра подводки, а также давления в стояке.

Второй момент: если при подключении биметаллического радиатора отопления вы решили использовать удлинитель, то можно сделать в нем отверстия. Такая «хитрость» поможет обеспечить условия, при которых теплоноситель будет равномерно поступать и распределяться по вертикальным коллекторам. Впрочем, делать это вовсе не обязательно, удлинитель и без отверстий отлично справляется со своими функциями.

Советы экспертов

Полезные советы по безопасному подключению биметаллических радиаторов отопления:

  • Желательно устанавливать запорные краны на входе и выходе радиатора. Например, это могут быть шаровые краны. Наличие таких элементов значительно упростит работы в случае, если требуется ремонт, модернизация или обслуживание отопительной системы. Принцип функционирования прост: достаточно закрыть шаровые краны, подождать, пока теплоноситель станет холодным, после чего радиатор можно без опасений снимать.
  • При подключении биметаллических радиаторов отопления, обязательно используются воздухоотводчики. Когда теплоноситель контактирует с материалом коллектора, неминуемо возникают химические реакции, сопровождающиеся образованием газов. Воздухоотводчики необходимы для эффективного отвода газов и воздуха, скопившихся в радиаторе. Если их нет, то в приборе возникнет избыточное давление, и при наступлении отопительного сезона неминуемо будет нарушена циркуляция, вследствие чего одна или несколько секций радиатора (или их части) попросту перестанут нагреваться.
  • При подключении необходимо обеспечить условия, при которых биметаллический радиатор отопления будет расположен строго горизонтально. При этом можно немного «поднять» угол прибора с той стороны, где монтирован воздухоотводчик — в этом случае газы из прибора будут спускаться гораздо эффективнее. При этом обратный уклон неминуемо нарушит циркуляцию.

Если вы хотите получить профессиональные рекомендации по выбору оптимального способа подключения биметаллических радиаторов отопления, а также узнать другие особенности, которые следует учитывать при планировании системы, просто свяжитесь со специалистом компании «САНТЕХПРОМ» по телефону: +7 (495) 730-70-80.

Подключение биметаллических радиаторов отопления — инструкция

Автор Монтажник На чтение 16 мин Просмотров 13. 2к. Обновлено

Радиаторное отопление — основной вид обогрева помещений в индивидуальных домах и коммунальных квартирах. Многие собственники при организации отопительной системы в своих домах используют подключение биметаллических радиаторов отопления к различному типу котлов.

При выборе из нескольких видов радиаторов, предлагаемых в торговой сети широком рядом производителей, потребителю полезно знать их конструктивные отличия. Немаловажным фактором при принятии решений являются технические характеристики радиаторных теплообменников, области их применения и варианты подключения к системе отопления.

Рис. 1 Подключение биметаллических радиаторов отопления разными способами

Виды и особенности радиаторов отопления

В торговой сети покупателю предлагают на выбор широкий ряд теплообменных радиаторов из различных материалов разнообразных форм. По материалам изготовления их все разбивают на следующие группы.

Чугунные

Чугунные батареи относят к классическим, в отличие от своих предшественников, современные изделия окрашивают в различные цвета и придают им эстетичный внешний вид. Вторую жизнь радиаторы из чугуна получили как элементы декора для подчеркивания дизайнерского ретро-стиля.

Отлитые секции батарей имеют рисунок, устанавливаются на ножки и окрашивается в подходящие к цветовой гамме помещений или стиля цвета.

Особенностями чугунных радиаторов являются их большой вес, высокая тепловая емкость, возможность изменять количество секций, соединяемых друг с другом ниппелями. Чугун обладает довольно высокой коррозионной устойчивостью и может эксплуатироваться около 50 лет, он выдерживает давление до 50 бар (низкопробный китайский может разорвать и при 20 — 30 барах) и высокие температуры жидкого или парообразного теплоносителя до + 120 °С. Из-за относительно невысокой теплопроводности, тепловая мощность одной чугунной секции составляет 140 — 150 Ватт.

Самые известные производители батарей из чугуна: российская фирма Нова (выпускает бюджетные варианты), компании Viadrus, Konner, Bohemia с более высокими ценами на свой товар.

Рис. 2 Дизайнерские батареи из чугуна

Алюминиевые

Теплообменники из алюминия, точнее его сплава с кремнием (силумина) на сегодняшний день занимают лидирующее положение по использованию в любых отопительных системах. Они изготавливаются в виде отдельных алюминиевых секций, внутри которых созданы проходные каналы для циркуляции теплоносителя.

Методы промышленного производства алюминиевых радиаторов — литье и экструзия.

Основные физическое и эксплуатационные характеристики теплообменников из алюминия: легкий вес, теплоотдача одной стандартной секции 80 на 80 мм — около 180 Вт, максимальное давление теплоносителя 10 — 15 бар у дешевых изделий и до 50 бар у дорогих итальянских, температура рабочей среды не более 115 °С. Благодаря высокой теплопроводности и низкой тепловой емкости с их помощью можно быстро прогреть помещение.

К недостаткам радиаторных теплообменников из алюминия относят невысокие для определенных условий эксплуатации прочностные характеристики (силумин, в отличие от чистого алюминия — хрупкий сплав). Также алюминиевые радиаторы обладают низкой коррозионной устойчивостью при эксплуатации их в рабочей среде с высоким или слишком низким водородным показателем рН.

Если рН теплоносителя превышает диапазон 7 — 8 единиц в сторону увеличения или уменьшения, происходит разрушение защитной оксидной пленки Al2O3 на поверхности металла, придающей ему антикоррозионную стойкость.

Рис. 3 Устройство секции алюминиевого радиатора

Металл постоянно образуют новую защитную пленку взамен разрушенной, при этом его слой постепенно истончается до образования свища. Также процесс появления нового оксида сопровождается выделением водорода Н2, еще более ускоряющего разрушение алюминия.

Если потребитель оставил воду в радиаторах алюминиевого теплообменника на лето, появление водорода из образования оксидной пленки и жизнедеятельности бактерий может привести даже к разрыву секций закрытой батареи.

Алюминиевые теплообменники не рекомендуется устанавливать в централизованную систему отопления из-за невозможности контролировать рН.

Лучшие производители таких радиаторов — итальянские компании Green, Sira, Group, Fondital.

Биметаллические

Как следует из названия биметаллы, в радиаторах этого вида используются два вида металлов — сталь и алюминий.

Биметаллический радиатор состоит из секций, каждая из которых представляет собой стальной трубный канал, помещенный в алюминиевый теплообменник.

Несмотря на более тяжелый вес в сравнении с алюминиевыми, введение в конструкцию внутреннего стального коллектора позволило увеличить прочностные и температурные характеристики биметаллических батарей. Они могут выдерживать напор теплоносителя в 50 — 100 бар (зависит от производителя) при температурах до 135 °С. При этом водородный показатель рабочей среды не играет существенной роли. Теплоотдача биметаллических радиаторов порядка 160 — 170 Вт.

Возможно будет интересно почитать про: Автономную систему отопления частного дома – полное руководство

Рис. 4 Конструкция биметаллических теплообменников

Стальные

Недорогие, простые и надежные радиаторы из стали бывают двух видов — панельные (рис. 5) и трубчатые.

Простейший трубчатый конвекционный радиатор состоит из двух фронтальных металлических листов, между которыми расположена трубопроводная магистраль с теплообменными пластинами, по которой циркулирует теплоноситель. Обогрев помещений происходит за счет конвекции воздушных масс.

Сверху наружные металлические панели покрывают защитным слоем лака, нанося его методом высокотемпературного обжига в печах.

Стальные теплообменники производят по технологии точечной сварки, они не являются секционными и разборными.

Предельные пороги давлений рабочей среды у трубчатых изделий 9 — 15 бар, у панельных 5 — 11 бар, теплопередача одной батареи лежит в диапазоне от 1200 до 1650 ватт. Стальные радиаторы выдерживают температуры рабочей среды до 115 °С. Водородный показатель не имеет существенного значения для стали и может отклоняться от нейтрального в 7 единиц на несколько пунктов в ту или иную сторону.

Однако для стали актуальна проблема коррозии, то есть высокое содержание кислорода в воде приводит к ее быстрому разрушению.

Поэтому радиаторы из стали не рекомендуется устанавливать в коммунальных квартирах и подводить к ним теплоноситель по трубам, не имеющим защиту от диффузии кислорода.

Также стальные панельные теплообменники чувствительны к перепадам давления и часто не выдерживают гидроудары, которые в централизованных отопительных сетях достигают значений порядка 35 — 40 бар.

Производители стальных батарей — отечественные фирмы “РС”, “Гармония”, немецкие “Kermi”, “Zehnde”, итальянские “Israp”, “Tesi”.

Рис. 5 Конструкция стальных панельных батарей

Впервые на российском рынке алюминиевые радиаторы появились в 90-х годах, их изготавливали в Италии несколько ведущих мировых производителей отопительного оборудования. Высокая теплопроводность и прочность батарей, которая по заявлению производителей доходила до 50 бар, казалось бы, могла обеспечить алюминиевым теплообменникам долгую безоблачную жизнь на отечественном рынке. Но зачем же понадобилось переделывать то, что и так хорошо работает?

Как указывалось выше, алюминий слишком требователен к водородному показателю рН, который не должен выходить за диапазон 7 — 8 единиц. В результате в процессе эксплуатации у одних потребителей батареи из алюминия функционировали до 10 лет, у других начинали течь через 2 — 3 сезона из-за разрушения защитного оксидного слоя.

Проблема усугублялась тем, что даже в индивидуальных домах, где в замкнутый отопительный контур можно было залить теплоноситель с фиксированным показателем рН, все равно текли батареи. Связано это с тем, что любая отопительная жидкость по тем или иным причинам со временем изменяет свой водородный баланс.

Вначале итальянские разработчики придумали технологию напыления внутрь проходного вертикального канала батарей защитных материалов. Однако они снижали теплопередачу и со временем истирались абразивными частицами песка, ржавчины, шлама, которые в большом количестве циркулируют по коммунальным отопительным сетям.

Возможно будет полезным узнать в отдельной статье, каким должен быть Температурный график подачи теплоносителя в систему отопления – условия, показатели

Рис. 6 Однотубчатый и двухтрубчатый полубиметалл – устройство в разрезе и внешний вид секций

Однотрубчатый полубиметалл

После неудачи в 2000-х годах с защитным напылением, итальянские производители разработали конструкцию радиаторов, получившую условное название однотрубчатый полубиметалл.

Так как самым уязвимым местом секций радиаторных батарей являлись их тонкостенные вертикальные участки, их усилили стальными трубками. По технологии изготовления уложенные в формы трубы из стали заливали алюминием.

После эксплуатации некоторое время у потребителей появились другие проблемы. Из-за разницы в тепловом расширении стали и алюминия в батареях возникали щелчки при резком изменении температуры теплоносителя. Иногда трубки из-за многочисленных циклов сжатия и расширения разбивали канал, в котором находились, и падали вниз, перекрывая путь теплоносителю.

Отопительная жидкость нередко проникала в пространство между стальной трубной оболочкой и алюминиевым каналом. После ее сжатия от расширения трубок образовывались невидимые глазу микротрещины, и батарея начинала подтекать. Эти недостатки привели к появлению другой конструкции батарей.

Производители однотрубчатого полубиметалла — российский Rifar серия Base, итальянская Sira, модель Gladiator.

Двухтрубчатый полубиметалл

В данной системе вместо одной вертикальной стальной трубки в секцию помещаются две изогнутые. Как в первой, так и во второй конструкции, это хорошо заметно на боковых торцах.

После изменений производители избавились от выпадания незакрепленных вертикальных труб, но основной недостаток алюминиевых батарей сохранился. Вода по-прежнему контактировала с алюминием, сейчас уже разрушая резьбу, предназначенную для ниппельного соединения секций.

Рекомендуем почитать: Что залить в систему отопления частного дома и как рассчитать объем жидкости

Производители двухтрубчатого биметалла — Sira, модели CF и RS.

Рис. 7 Биметалл в разрезе и экономичный тонкостенный вариант с завернутой резьбой от Rifar Monolit

Полный биметалл

Настоящий биметалл, где нет контакта теплоносителя с алюминием, впервые стала производить фирма Global. Модель называется Global Style и является первым полным биметаллом.

Global сделали водопроводящий коллектор в виде сваренных между собой горизонтальных и вертикальных трубных участков. На их горизонтальные отрезки толщиной 4 мм была нанесена внутренняя резьба для соединения секций между собой, вертикальные (их диаметр 13 — 22 мм) имели чуть меньшую толщину в 2 мм и приваривались к коротким горизонтальным участкам. После изготовления, стальной закладной элемент заливали алюминием под высоким давлением.

Несложная технология позволила избавиться от всех недостатков алюминиевых батарей и получить высокую прочность, максимально долгий срок службы настоящего биметалла. Случаи разрыва таких радиаторов неизвестны и рассчитывается математическим путем, они способны выдержать давление в 200 атмосфер.

К недостаткам биметаллических радиаторов следует отнести снижение теплоотдачи с течением времени из-за увеличения пространственного зазора между трубной закладкой и алюминиевой заливкой.

Поэтому европейские производители заливают трубы алюминиевой массой под давлением в 800 — 900 тонн на сантиметр квадратный, стремясь обеспечить плотный контакт на протяжении всего эксплуатационного срока. Более дешевые китайские изделия выпускают по технологии заливки алюминия под давлением в 400 тонн на сантиметр квадратный.

Распространенные марки биметаллических батарей от разных производитетей: Royal Thermo Indigo, Rifar Monolit, Sira RS Bimetal, Rommer Optima, Теплоприбор, Oasis BM, Halsen BS.

Рис. 8 Конструкция клееного полубиметаллического радиатора на примере рассыпавшейся низкокачественной китайской поделки

Экструзионный однотрубчатый полубиметалл

Технология придумана итальянской Sira и представляет собой сборную конструкцию.

При изготовлении вертикальные участки со стальной резьбовой Т-образной закладкой заливают алюминиевым сплавом под давлением, а горизонтальные фрагменты из первичного алюминия вытягивают методом экструзии. Так как в отличие от хрупкого силуминового сплава, первичный алюминий более мягок и пластичен, вероятность его разрыва на тонких вертикальных участках радиатора резко падает.

Далее вертикально экструзионно вытянутые фрагменты склеивают с отлитыми горизонтальными деталями через выступающие Т-образные гильзы, в результате получают технологический гибрид под названием «клеянка».

Понятно, что клеевое соединение в гибридном изделии — его самое слабое место. Склейка может быть нарушена при резких ударах от падения радиатора или при соединении секций между собой.

Хотя клеевая технология на первый взгляд кажется абсурдной, она помогает избавиться от существенного недостатка всех литых алюминиевых и биметаллических радиаторов.

Дело в том, что в процессе производства в отливке алюминиевой секции остается сквозное отверстие, которое располагается внизу в виде вытянутого стакана. Его закрытие — головная боль для многих производителей.

Любые приваренные пробки или тонкостенные крышки наподобие майонезных не могут выполнить роль эффективных заглушек. Внизу в углублении скапливается шлам, что ускоряет процесс разрушения алюминия. А тонкие крышки в радиаторах заподлицо с проходным каналом (Fondital) истираются абразивными частицами.

В отдельной статье подробно рассказывается о том, что из себя представляет Коллекторная система отопления частного дома, про основные узлы, конструкцию, монтаж, а также, используемые материалы

Рис. 9 Биметалл в разрезе, полученный по смешанной технологии

Смешанный однотрубчатый полубиметалл

Итальянцы не ищут легких путей. Убедившись в очевидном факте, что экструзионно вытянутый алюминий в «клеянках» также подвержен коррозии из-за отклонений в рН, они вставили в вертикальный фрагмент тонкую стальную трубку. Чтобы она не выпадала, как в конструкции с однотрубным полубиметаллом, ее сделали тонкостенной и запрессовали. Далее вертикальные экструзионно вытянутые фрагменты со стальной закладкой склеили с горизонтальными.

В результате реализации столь сложного и извилистого пути с использованием смешанной технологии получили полный биметалл.

Биметаллические радиаторы внешне, по месту расположения и размерным параметрам подсоединенных патрубков, ничем не отличаются от алюминиевых аналогов. Чтобы их подключить к отопительной магистрали, используются одинаковые комплектующие и арматура.

Рис. 10 Примеры подключения батарей к трубам из разных материалов

Материалы труб

Основной недостаток полных биметаллических радиаторов — слабая устойчивость стального трубопровода к коррозии, напрямую связанная с процентным содержанием кислорода в воде. То есть для установки биметаллических радиаторов лучше использовать металлические трубопроводы (сталь, нержавейка, медь) или полимерные с алюминиевой оболочкой — металлопластик и армированные алюминием полипропилен. Полипропиленовые трубы армированные стекловолокном тоже подойдут, но помните, что у них более высокую кислородопроницаемость, то есть, со временем в системе отопления может появиться коррозия на металлических частях (правда, пройдет очень много времени).

Арматура и комплектующие

Стандартная батарея имеет четыре резьбовых отвода, ее подключают в двух точках, вверху устанавливают кран Маевского, а на четвертый отвод ставят заглушку.

В торговой сети реализуют специальные наборы с переходниками (короткими муфтами с наружной и внутренней резьбой) для вкручивания в радиаторные отводы, в которые также входят кран Маевского, заглушка и крюки с крепежом для подвешивания батареи.

Чтобы можно было снять радиатор для ремонта и обслуживания, обычно его подключают с 2-х сторон через шаровые краны и муфты американки, которые также приобретают в торговой сети.

Если необходимо регулировать теплоотдачу, на трубопровод подачи перед батареей устанавливают терморегулятор.

Существует немало конструкций термостатических вентилей, которые способны полностью перекрывать воду, то есть заменяют один шаровый кран. Понятно, что такой прибор выгоднее приобрести, чем по-отдельности запорный кран и терморегулятор.

Для монтажа лучше использовать льняную паклю. Дело в том, что она в отличие от нити и Фум-ленты способна расширяться при намокании. То есть в процессе эксплуатации из-за разного температурного расширения алюминия и резьбовых стальных переходников, зазор между ними при нагреве становится слишком мал, и после отключения отопления холодные батареи начинает подтекать.

То есть Фум-лента и сантехническая нить не восстанавливают свою форму, в то время как лен от воды разбухает и перекрывает все мелкие каналы для прохождения теплоносителя.

Рис. 11 Комплекты для монтажа радиаторов

Схема подключения биметаллических радиаторов отопления

Радиаторы подключают в однотрубную и двухтрубную разводку отопительной системы. При этом в зависимости от места расположения подводящего теплоноситель трубопровода различают следующие схемы их подключения:

  • Нижнее. Не слишком эффективная по тепловой отдаче схема, в основном используется в популярной однотрубной разводке типа ленинградка. К ее преимуществам относят эстетичный внешний вид из-за отсутствия вверху труб, и более простой экономичный монтаж. (Кстати, есть статья об узле нижнего подключения радиатора, как выбрать и подключить).
  • Одностороннее. Основной тип подсоединения радиаторов в коммунальных квартирах при однотрубных и двухтрубных системах и наличии вертикального стояка.
    Если теплоноситель циркулирует по одной трубе, проходя последовательно через все радиаторы, в разводке обязательно должна присутствовать байпасная перемычка. При ее наличии можно отсоединить радиатор, перекрыв шаровые краны на входе и выходе труб, при этом вода будет обходить батарею по байпасу. По эффективности односторонняя схема подключения радиаторов биметаллических немного уступает диагональному и превосходит нижнее.
  • Диагональное. Наилучший вариант подключения радиатора по теплопередаче при верхней подаче. Широко используется при однотрубной, двухтрубной разводках вне зависимости от положения отопительного стояка. В самотечных системах отопления, которые иногда используют в индивидуальных домах, все батареи подключают по диагонали.

В отдельной статье можно подробно узнать Все о диагональном подключении радиаторов отопления, здесь рассказывается о способах и схемах подключения радиаторов, даются советы и рекомендации

Рис. 12 Виды подключений и их тепловая эффективность

Установка и подключение радиаторов отопления

Перед проведением работ приобретают комплектующие — переходники с крюками, в типовой комплект часто входят дюбеля с винтами. Также покупают терморегулятор и два вентильных или шаровых крана.

Для просверливания отверстий понадобится шуруповерт или дрель с подходящим для дюбеля сверлом. Также необходимо иметь строительный уровень, рулетку и карандаш, разводной сантехнический ключ.

Перед проведением работ определяют место размещения и размеры батареи по следующим правилам:

  • теплообменник располагают симметрично относительно центральной оси окна;
  • он должен подвешиваться на расстоянии 100 — 120 мм от нижней поверхности подоконника;
  • расстояние между полом и батареей не должно выходить за диапазон 80 — 120 мм;
  • оптимальный просвет между батареей и стеной 30 — 50 мм;
  • общая длина батареи — 70 — 80% от ширины окна, под которым она закрепляется.

Для навешивания биметаллических радиаторов используют минимум три кронштейна — два вверху и один снизу.

Производя подключение биметаллических радиаторов отопления, возможно понадобится информация про: Трубы для отопления – какие бывают виды современных труб, а также, что лучше выбрать при монтаже системы отопления в частном доме или квартире

Рис. 13 Схемы подключение биметаллических радиаторов отопления к вертикальному стояку в коммунальных квартирах

Диагональное подключение биметаллического радиатора с терморегулятором при заранее выведенных трубах проводят в следующей последовательности:

Крепление удерживающих крюков

  • Вначале проводят разметку на стене. Очерчивают центральную вертикальную линию, затем симметрично прикладывают радиатор к стене (понадобится помощь второго работника) и делают карандашом сквозь его ребра отметки.
  • Две точки под горизонтальным участком секции ставят вверху и одну точку внизу около центральной линии.
  • Далее сверлят отверстия необходимого диаметра и устанавливают радиаторные крепления на дюбеля с шурупами.
  • Навешивают батарею и проверяют правильность ее установки — она должна жестко опираться на все кронштейны без просветов.

Подсоединение арматуры

  • Прикручивают ключом четыре переходника с радиаторной 1-дюймовой резьбы на размеры 1/2 и 3/4 дюйма, которые имеют герметизирующие прокладки.
    Теоретически их можно вкручивать без какой-либо дополнительной подмотки, однако лучше использовать лен. Дело в том, что при контакте алюминиевой и стальной резьбы со временем происходит их частичное разрушение, в свободных полостях оседает известковый налет и спустя определенное время переходник пристывает и не поддается выкручиванию разводным ключом.

    Лен препятствует образованию отложений, забивая свободные каналы, что значительно облегчает дальнейший демонтаж арматуры и разборку батареи.

  • Вверху радиатора прикручивают соединительную муфту (американку) для подключения терморегулирующей головки, снизу по диагонали такую же американку устанавливают на выходе батареи.
  • На свободный выход внизу устанавливают заглушку, для подмотки деталей используют лен. Напротив терморегулятора вкручивают разводным ключом в переходник кран Маевского.
  • Далее на верхнюю входную трубу прикручивают термостатическую головку с регулятором, повернутым в сторону помещения.
  • На выходную диагональную трубу снизу вворачивают запорный клапан (шаровый кран).
  • После навешивают радиатор на кронштейны и соединяет его вход и выход с термостатической головкой вверху и запорным клапаном снизу, используя накидные гайки американок.

Рис. 14 Подключение биметаллических радиаторов отопления — основные этапы

Биметаллические радиаторы — одна из новейших технологических разработок ведущих мировых производителей, которую можно эффективно использовать как в коммунальных, так и в индивидуальных отопительных системах. Методы и варианты с помощью которых производится подключение биметаллических радиаторов отопления ничем не отличается от подсоединения популярных алюминиевых радиаторных теплообменников.

подключение, схемы и методы, как правильно подключить батареи в квартире от котла

Биметаллические радиаторы — устройства, состоящие из двух материалов. Обычно это сплав алюминия со сталью, хотя встречаются другие варианты.

Подобные батареи пользуются высоким спросом благодаря комбинации хороших характеристик.

Процесс подготовки к подключению от котла

Предварительные работы весьма важны перед монтажом радиаторов отопления:

  • Обследование текущей обвязки. Изучение позволит создать аналогичную систему, что положительно скажется на эксплуатации.

  • Проверка комплектующих к радиатору. В наборе должны присутствовать: кран Маевского, запорные вентили, кронштейны.

В некоторые модели включены переходники и прокладка, иногда их нужно докупить. При ручной замене понадобятся инструменты — ключи, подходящие по размеру. И также необходимо приобрести герметик.

  • Проверка труб на совместимость с новой батареей. Внешний слой биметаллического устройства выполнен из алюминия, которые не сочетается с мягкими материалами. Например, потребуется заменить медную обвязку или краны. В противном случае системе грозит скорое разрушение.
  • Подбор места размещения батареи. Это особенно касается креплений, если происходит замена старого устройства.
  • Проведение исследования радиатора на наличие видимых повреждений, целостности поверхности, покрытия.

  • При полном соответствии компонентов переходят к замене. На подготовительном этапе из старых батарей сливают воду.

Окончив подготовку, переходят к выбору схемы подключения. В первом пункте указано, что следует выбирать вариант, аналогичный старому. Это позволит не перестраивать всю систему и сохранит текущий КПД. Процесс работы достаточно прост и описан ниже.

Важно! По окончании проводят комплекс испытаний, известный как опрессовка. Она включает проверки водой, теплом и пневматикой.

Методы подключения и схемы

Существует три метода монтажа радиаторов:

  • Боковой: подачу присоединяют к верхней части батареи, а обратку к нижней, причём с одной стороны. Этот вариант эффективен если количество секций не превышает 10. В противном случае удалённая часть будет слабо прогреваться, что снизит КПД. Подобная схема подключения наиболее распространена в многоквартирных домах.

Фото 1. Три распространенные схемы подключения биметаллических радиаторов отопления и их примерные теплопотери.

  • Нижний: обе трубы подводят с одного края, горизонтально, что помогает скрыть обвязку, создать красивый интерьер. Применяется в хорошо прогреваемых помещениях или в сочетании с тёплыми полами. Это связано со слабым прогревом радиаторов, по которым вода должна подниматься наверх.
  • Диагональный: подачу монтируют к верхней части батареи, а обратку — к нижней, но с другого бока. Теплоноситель легко растекается по всему объёму, что делает данную схему наиболее эффективной.

При монтаже нового устройства в многоквартирном доме нужно выбирать тот же вариант, что задуман инженерами. В частном строении следует ориентироваться на личные предпочтения и расчёты.

Как правильно подключить биметаллический радиатор отопления в квартире

Определившись со схемой, подготавливают детали:

  • батарею;
  • трубы;
  • краны;
  • клапан спуска воздуха;
  • переходники;
  • запорную арматуру;
  • кронштейны;
  • прокладки.

Справка! Большинство деталей идут в комплекте с радиатором. При отсутствии некоторых компонентов, их необходимо докупить.

Сам процесс заключается в 6 шагах:

  1. Демонтаж старого устройства. Он начинается на подготовительном этапе со слива воды из текущей батареи. Для этого перекрывают вентиль на подаче и открывают на обратке. Затем следует удаление участков труб, примыкающих к магистрали. Обычно их просто выкручивают. Если соединения не имеют резьбы, используют приборы для нагрева.
  2. Разметка точек крепления батареи. Для этого радиатор прикладывают к предполагаемому месту монтажа. Понадобятся не менее двух людей: пока один держит, второй метит карандашом (или другим предметом, в зависимости от покрытия). Следует помнить, что трубы должны состыковываться, а для выравнивания использовать строительный уровень.
  3. Установка и фиксация крепежей. В намеченных точках проделывают отверстия под крепежи. Для этого потребуется перфоратор и дюбели. Последние часто включают в комплект.

Для радиаторов из трёх секций достаточно одного крепления, из 4–6 — двух, из 7–9 — трёх, в остальных случаях — четырёх.

Пять и больше требуются при монтаже очень длинных конструкций, применение которых нецелесообразно из-за снижения КПД.

  1. Установка радиатора. Устройство ставят на крепления, так, что горизонтальный коллектор получается подвешенным. Следует учитывать, что биметаллические радиаторы надо подключить и испытать в заводской упаковке. Это помогает при обнаружении проблем: после неудачной опрессовки батарею легко демонтируют и возвращают производителю для устранения неисправностей или замены на новую. Рабочий прибор закрепляют, вкручивая в резьбу. Иногда трубы просто приваривают, что зависит от определённой обвязки.
  2. Установка крана Маевского. Устройство всегда включено в комплект к радиатору. Его размещают в любой доступной для обслуживания точке батареи, затягивая динамометрическим ключом. Такой способ укрепления поможет избежать превышения напряжения выше нормы. Затем проводят монтаж запорной арматуры и регулятора температуры, если последний используют.
  3. Соединение с теплопроводной системой отопления. Биметаллические радиаторы нельзя зачищать наждаком или напильниками, поскольку испортится обшивка. Это приведёт к возникновению течей, в редких случаях переходящих в прорыв.

Особенности подведения батарей в частном доме

Во время монтажа нужно соблюдать принципы, описанные выше. Последовательное размещение компонентов и тщательный контроль над процессом позволит создать систему, способную долго работать от котла без дополнительного обслуживания.

Важно! При выборе места следует выбирать участки со свободным доступом. Это сделает возможный ремонт удобнее. И также облегчит перекрытие кранов при необходимости проведения опрессовки.

Принципиально схемы ничем не отличаются от тех, что используют в квартирах. Установка биметаллического радиатора довольно проста, но для соблюдения точности будет правильно пригласить специалиста.

Полезное видео

Посмотрев видео, можно ознакомиться с процессом обвязки, пайки труб, установки самого радиатора.

Важность качественной работы

Качественный монтаж — основа длительной эксплуатации. Ошибки, допущенные в процессе работ, могут привести к поломке. В первую очередь, это касается кранов, сварки, прокладок и герметичных стыков.

Как правильно установить биметаллический радиатор отопления: советы и правила монтажа

Каждое жилое помещение нуждается в отоплении. Причем отопительное оборудование должно быть качественным. Ведь почти полгода холодов система отопления должна исправно функционировать. При планировании системы отопления, многие задаются вопросом, радиаторы стальные или биметаллические что лучше и, сравнив характеристики обоих видов, останавливают свой выбор все же на биметалле. Ведь благодаря высоким показателям теплоотдачи, аккуратному внешнему виду, именно такие батареи являются практичными, долговечными и позволяют создать уют в квартире, наполнить помещение теплом.

К тому же устанавливать их можно самостоятельно. Это не требует больших разрушений, проводится достаточно просто и аккуратно. Главное знать основные правила и провести правильный расчет параметров устройства. Если вы не знаете, как правильно установить биметаллический радиатор отопления, данная статья для вас. Мы рассмотрим устройство радиаторов, особенности монтажа, а также кратко опишем некоторые наиболее популярные модели для оборудования отопительной системы.

Устройство биметаллических батарей

Надо отметить, что устройство биметаллических радиаторов отопления достаточно простое. Состоит конструкция из самих радиаторов, а также стальных труб, примыкающих к ним. Участки соединений обрабатываются методом точечной сварки.

Радиатор представляет собой металлическую трубу. Внутри – железо. Это идеальный материал, который отлично подходит к металлическому комплексу отопления. Поскольку более эффективно держит давление. Сверху труба покрывается алюминиевым слоем. Что повышает характеристики теплопроводности. А так как при производстве батареи используется два металла, она и получила название биметаллической. Используя биметалл радиаторы отопления становятся более прочными, имеют высокие эксплуатационные характеристики. Более подробно о технических характеристиках биметаллических радиаторов можно прочитать здесь.

Биметаллические радиаторы могут быть двух типов:

  1. с усиленными каналами;
  2. на основе стального каркаса. Такие устройства лучше защищены. Поскольку исключается контакт воды с алюминием. Помимо этого им не страшна коррозия и они гораздо прочнее, нежели варианты с усиленными каналами.

Батареи из биметалла рекомендуется устанавливать в квартирах с центральным комплексом водяного отопления на основе железа, стали. Надо отметить, что стоимость биметаллических радиаторов отопления вполне приемлема и зависит от мощностных характеристик модели и размера оборудования.

Чтобы установка радиатора была правильной, важно сделать точный расчет количества секций.

Как рассчитать количество секций?

Для того чтобы получить точный расчет, лучше, конечно, доверить эту работу специалистам. Если же вы решили проводить монтаж биметаллического радиатора самостоятельно, то вы должны знать особенности подсчета.

Потребуется два показателя: площадь жилого помещения и уровень мощности выбранной модели батареи. Мощность биметаллических радиаторов отопления производители указывают в паспорте прибора. Величину площади надо разделить на 10. Это необходимо для расчета по 1 кВт на 10 кв.м. Полученное число следует разделить на мощность биметаллического отопительного устройства. Полученное в результате деления число надо округлить до целых (в большую сторону). Это позволяет получить информацию о нужном количестве секций.

Установка биметаллических батарей

Проводить монтаж отопительного устройства необходимо строго по инструкции, изложенной в паспорте прибора.

В ней четко описана процедура подключения биметаллических радиаторов отопления для определенной модели. Надо отметить, что монтаж всех элементов системы проводится в полиэтиленовой упаковке радиатора. И снимать эту упаковку нельзя до завершения всего процесса установки.

Рассмотрим, как подключить биметаллический радиатор отопления самостоятельно. При проведении монтажных работ надо учитывать следующие нюансы:

  • располагать батарею лучше следует по центру окна;
  • устанавливается оборудование только в горизонтальном положении;
  • обогревательные детали устанавливать надо на одном уровне в пределах помещения;
  • от стенки до батареи расстояние должно быть от 3 до 5 см. Слишком близкое расположение отопительной системы к стене будет приводить к тому, что тепловая энергия станет распределяться нерационально;
  • от подоконника надо выдерживать расстояние 8-12 см. При слишком маленьком зазоре тепловой поток от батареи снизиться;
  • между радиатором и полом расстояние должно быть 10 см. Если установить прибор ниже, эффективность теплообмена понизится. Также неудобно будет проводить очистку пола под батареей. А вот слишком высокое расположение отопительного агрегата станет причиной того, что температурные показатели внизу и вверху комнаты будут сильно отличаться.

Алгоритм монтажа биметаллического радиатора следующий:

  1. проводится разметка места для установки на стене кронштейнов;
  2. фиксация кронштейнов. Если стена кирпичная либо железобетонная, то кронштейны закрепляются при помощи дюбелей и цементного раствора. Если вы имеете дело с гипсокартонной перегородкой, то фиксация осуществляется двусторонним креплением;
  3. на кронштейны ставится батарея;
  4. радиатор подсоединяется к трубам;
  5. устанавливается термостатический клапан либо краник;
  6. вверху батареи ставится воздушный клапан.

Ниже приведены некоторые рекомендации касательно самостоятельной установки биметаллического отопительного прибора:

  • перед началом монтажа следует перекрыть поступление теплоносителя в систему на выходе и входе. В трубопроводе жидкость должна отсутствовать;
  • перед установкой необходимо проверить комплектность батареи. Радиатор должен быть в собранном виде. В противном случае нужно провести сбор агрегата согласно инструкции производителя;
  • во время сборки абразивные материалы использовать запрещено. Поскольку конструкция батареи должна быть герметичной. А абразивные вещества могут разрушить материал устройства;
  • в биметаллических радиаторах используется как правосторонняя, так и левосторонняя резьба. Об этом нужно помнить во время затягивания крепежных деталей;
  • при соединении санитарно-технических фитингов большую роль играет правильный выбор материала. Как правило, используют лен с термически стойким герметиком. Применяются нити Tangit либо лента ФУМ;
  • перед началом установки вы должны иметь четко спланированную схему подключения радиатора. Тут надо отметить, что схема подключения биметаллических радиаторов отопления может быть нижней, диагональной либо боковой;
  • когда монтаж закончен, проводят включение прибора: плавно открываются все вентили агрегата, преграждавшие ранее путь теплоносителю. Если открыть краники резко, можно спровоцировать засорение внутреннего трубного сечения либо вызвать гидроудар. После того, как вентили открыты, следует спустить лишний воздух при помощи воздухоотводчика;
  • не стоит перекрывать биметаллические батареи экранами, устанавливать их в стенных нишах. Это приведет к тому, что теплоотдача прибора резко снизится.

Какой радиатор лучше установить?

Современный рынок предлагает широкий выбор биметаллических радиаторов разных марок от разных производителей. Есть отечественные и импортные варианты. Среди иностранных моделей популярны итальянские или немецкие радиаторы отопления биметаллические.

К популярным батареям немецкого производства можно отнести радиаторы компании Тенрад. Все изделия данной фирмы отличаются надежностью и высокими эксплуатационными параметрами. Оребрение трехрядное, что обеспечивает хорошие показатели теплоотдачи.

Среди итальянских изделий стоит рассмотреть итальянские биметаллические радиаторы отопления Global STYLE PLUS 500. Для подключения такого агрегата используется боковая схема. Монтируется прибор на стену. Благодаря отличным техническим характеристикам и привлекательному внешнему виду, на радиатор биметаллический Global STYLE PLUS 500 отзывы только положительные. Чаще всего пользователи отмечают эффективную работу и долговечность. Теплоотдача равняется 185 Вт. А температура теплоносителя может достигать максимальной отметки в 110 градусов. На радиаторы отопления Глобал отзывы многочисленные.

Также можно выделить итальянские радиаторы XTREME. Данная модель новая. При минимальных затратах прибор дает максимальную теплоотдачу. Такие радиаторы отопления Италия биметаллические выпускает специально для установки в российские отопительные системы. Модель предназначена для работы в непростых условиях. Например, при низком качестве воды агрегат отлично работает в высоких показателях температуры и давления. На биметаллический радиатор XTREME отзывы пользователей положительные: хорошая теплоотдача, невысокая цена.

Итальянская компания Радена также специализируется на производстве биметаллических батарей. Для изготовления используется только высокоуглеродистая сталь. Рабочее давление составляет 25 атмосфер. А температура среды достигает 100 градусов. Есть батареи со стандартным боковым и с нижним подключением. На радиаторы отопления Радена отзывы положительные. Отмечается долговечность, хороший дизайн, возможность использования в однотрубных и двухтрубных отопительных системах с горизонтальным и вертикальным размещением теплопроводов.

Рассмотрим модели отечественного производства. Например, радиаторы отопления российские биметаллические Рифар Монолит. Хоть бренд Рифар на рынке появился совсем недавно, продукция данной фирмы уже успела потеснить изделия именитых немецких и итальянских производителей. Используются радиаторы Рифар в жилых и административных зданиях. Имеют отличные характеристики. Также полностью соответствуют радиаторы биметаллические гост 31311 2005, ТУ.

Рифар монолит выпускаются в двух типоразмерах: 350 и 500 мм. Чаще всего используются радиаторы с межосевым расстоянием 500 мм. Стыки между секциями отсутствуют. Поэтому, если вы решили установить такую батарею, надо сразу выбрать необходимую длину.
На радиаторы отопления биметаллические Рифар Монолит 500 цена оптимально сочетается с функциональностью и качеством. Монтаж таких батарей проводится быстро и легко. Не требует использования переходников.

Не так давно появились в продаже и радиаторы Термохит российского производства. Данное оборудование относится к бюджетному классу. Широкого распространения еще не получило, поэтому на радиаторы отопления Термохит отзывы не слишком многочисленны. Технические характеристики высокие. Но все же качество уступает более дорогим моделям.

Есть на отечественном рынке и батареи китайского производства. Тут стоит отметить радиаторы Оазис. Продукция имеет международную сертификацию, отличается неплохими техническими характеристиками. На биметаллические радиаторы отопления Оазис отзывы в основном положительные. Пользователи выделяют такие плюсы данных агрегатов, как высокие технические показатели, длительная заводская гарантия и демократичная цена.

Возможные способы подключения радиаторов отопления

 

Вводная часть

Способы подключения радиаторов отопления зависят от систем отопления (однотрубная или двухтрубная), а также от места расположения радиаторов и особенностей прокладки труб отопления. Ниже вы можете видеть наиболее применяемые способы подключения радиаторов отопления. Их шесть.

Приобрести радиаторы можно на сайте grostal.ru – Интернет-магазин, где вы можете купить радиаторы, батареи, водонагреватели, вентиляционные решетки и всего что нужно для эффективного обогрева и проветривания помещений.

Шесть способов подключения радиаторов отопления

  1. С запорными кранами сверху и снизу;
  2. Нижнее подключение в одной точке;
  3. Нижнее подключение в двух точках;
  4. Подключение в двух точках с регулировочными кранами;
  5. Подключение с автоматическими термостатическими кранами;
  6. Подключение от стены.

С запорными кранами сверху и снизу

Этот способ подключения радиаторов применяется в двухтрубных системах отопления. Способ использует байпас для изолирования данного радиатора от общей системы отопления. Радиатор подключается в верхней и нижних точках радиатора, с одной его стороны. Шаровые запорные краны позволяют отключить от системы отопления, а байпас позволяет при снятом радиаторе не прерывать общую систему отопления.

Нижнее подключение в одной точке

Нижнее подключение в одной точке осуществляется, при помощи специального инжекторного клапана. Инжекторный клапан позволяет подключать алюминиевые, биметаллические, чугунные радиаторы в одной точке, с подводом труб снизу радиатора. Может комплектоваться термоголовкой для обеспечения автоматической поддержки температуры. 

Нижнее подключение в двух точках

Нижнее подключение в двух точках осуществляется специальными наборами для нижнего подключения. В набор входят: гидравлический узел для нижнего подключения, хромированная трубка байпаса, угловой (или осевой или термостатический) клапан с термоголовкой.

 

Подключение в двух точках с регулировочными кранами

Этот способ подключения похож на подключение с запорными клапанами, только вместо запорных вентилей имеющих, только две позиции «открыто» и «закрыто», это подключение позволяет плавно регулировать поток теплоносителя через радиатор, а, следовательно, регулировать температуру радиатора.

Подключение с автоматическими термостатическими кранами

Термостатические краны позволяют автоматически регулировать температуру радиатора при помощи термостатических кранов.  

Подключение от стены

Подключение от стены это специфический способ подключения при выходе труб отопления из стены. Способ наиболее эстетичен по исполнению.

Отметки элементов на рисунках

  1. Воздухоотводчик – позволяет удалять скопившейся воздух;
  2. Краны шаровые запорные – позволяют отключить радиатор от системы отопления. Имеют два положения «Закрыто» или «Открыто».
  3. Байпасная линия (Байпас) нужна для протекания теплоносителя к другим радиаторам при закрытых радиаторных кранах. Применяется в однотрубной системе отопления.
  4. Клапан Ижекторный – позволяет подключать радиатор в одной точке. Применяется в двухтрубных системах отопления.

  • 5. Набор для нижнего подключения радиаторов отопления. Набор для нижнего подключения состоит из гидравлического узла для нижнего подключения, хромированной трубки байпаса, углового (или осевого или термостатического) клапана с термоголовкой.
  • 6. Клапан радиаторный ручной – позволяет вручную регулировать поток теплоносителя через радиатор, тем самым регулируя температуру в помещении.
  • 7. Клапан радиаторный обратный – позволяет отбалансировать расход теплоносителя в радиаторе. Также, клапан выполняет функцию запорного крана при демонтажных работах.
  • 8. Клапан термостатический с термоголовкой – позволяет автоматически регулировать температуру радиатора. Не требует электропитания.
  • 9. Радиатор

Это все способы подключения радиаторов отопления, которые мы хотели показать в этой статье.

©Obotoplenii.ru

Другие статьи раздела: Радиаторы

 

 

Установка биметаллических радиаторов отопления своими руками

Биметаллические радиаторы сегодня очень часто используются в системах отопления квартир и частных домов. Они имеют ряд серьёзных преимуществ перед чугунными и алюминиевыми агрегатами, вследствие чего довольно широко востребованы в сфере обогрева жилья.

Если говорить о преимуществах, то биметаллические батареи характеризуются следующими свойствами:

  • Высокая теплоотдача.
  • Высокая коррозиостойкость по сравнению с алюминиевыми изделиями.
  • Хорошее рабочее давление.
  • Высокая инерционность.
  • Маленькая масса.
  • Привлекательный внешний вид.

Читайте также: Как батарею подключить?

Установка биметаллических радиаторов – процесс довольно трудоёмкий, требующий большого количества времени и усилий. Однако если знать все тонкости, соблюдать аккуратность и правильно выполнять все операции, эту работу вполне можно сделать своими руками.

Нужно помнить, что от того, насколько грамотно сделана обвязка, зависит эффективность работы системы отопления.

Демонтаж старых батарей

Если имеется в виду не монтаж новой системы отопления, а замена старых радиаторов своими руками, то начинаем работы с демонтажа старых батарей. Поэтапно процесс выглядит следующим образом:

  • Необходимо остановить систему, дождаться её остывания и слить теплоноситель.
  • Болгаркой обрезаем старые радиаторы на линии подводки между резьбовым соединением и самим агрегатом.
  • Придерживая трубу одним трубным ключом, вторым откручиваем ненужный кусок трубы. Если соединение не поддаётся, его необходимо нагреть – за счёт температурного расширения резьбу удастся провернуть.
  • После того, как мы открутили ненужные куски труб, очищаем резьбу на трубе подводки и осматриваем её на предмет повреждений. Если таковые обнаружены – срезаем её болгаркой и плашкой нарезаем новую.
  • Ненужную батарею снимаем с креплений. Сами крепления преждевременно не снимаем – они могут пригодиться для того, чтобы крепить к стене новые биметаллические радиаторы.

Расчёт биметаллических обогревателей

Для того чтобы обеспечить эффективный нагрев помещения, нужно грамотно рассчитать мощность батарей. Она зависит от размера, то есть от количества секций.

Исходя из норм отопления и зная объём помещения, рассчитываем требуемую мощность для отопительных приборов. Зная мощность одной секции биметаллического радиатора – а она составляет около 180 Вт, набираем необходимое количество секций, чтобы обеспечить требуемую мощность.

Проверяем, возможен ли монтаж изделия с полученными размерами в нашем помещении. При этом нужно учитывать следующие факторы:

  • Радиаторы отопления устанавливаются под оконными проёмами – таким образом мы создаём тепловую завесу для холодного воздуха, идущего от окна.
  • Обвязка своими руками выполняется таким образом, чтобы была возможность выполнять сервис и ремонт агрегата без остановки системы отопления, для этого используется система байпасов.
  • Расстояние от верхнего края батареи до подоконника должно составлять от 5 до 10 см.
  • Расстояние от пола до нижнего края должно составлять около 15 см.
  • Монтаж осуществляется таким образом, чтобы агрегат находился на стене по средней линии окна.
  • Обвязка новых батарей удобнее всего полипропиленом. Если речь идёт о замене радиаторов, то можно воспользоваться старым трубопроводом, при условии, что он в хорошем состоянии.
  • Обвязка выполняется с использованием системы байпасов, регулировочных вентилей и кранов Маевского.

Способы разводки и подключения биметаллических радиаторов

Выполняя монтаж биметаллических батарей своими руками, нужно знать о том, какими способами может выполняться обвязка.

Читайте также: Ключи для разборки алюминиевых радиаторов.

Система отопления бывает двух типов:

  • Однотрубная – теплоноситель движется по одной трубе от котла через все приборы отопления, соединённые последовательно. Недостатком такой схемы является то, что к последнему агрегату жидкость приходит уже ощутимо остывшей. Поэтому для выравнивания температуры в помещениях последние в цепочке устройства нужно увеличивать.
  • Двухтрубная – теплоноситель движется по трубе, к которой параллельно подсоединены приборы отопления. Остывшая жидкость по другой трубе возвращается к котлу. Такая система обеспечивает равномерное прогревание всех батарей, однако она гораздо дороже и сложнее.

Подключение к системе можно выполнять по следующим схемам:

  • Односторонняя – прибор подключается через верхний и нижний патрубки с одной стороны.
  • Нижняя – прибор подключается через правый и левый нижние патрубки. Эта схема используется в том случае, если мы прячем трубы в пол.
  • Диагональная – прибор подключается через верхний патрубок с одной стороны и через нижний патрубок с другой стороны.

Установка биметаллических радиаторов своими руками

После того, как демонтированы старые батареи, рассчитаны размеры новых радиаторов и они собраны, можем начинать монтаж. Батареи имеют небольшую массу, поэтому их можно без проблем крепить к стене. Процесс состоит из следующих этапов:

  • Прикладываем агрегат к стене и отмечаем карандашом на стене места расположения кронштейнов для крепления.
  • Кладём прибор на пол и в отмеченных местах крепим к стене кронштейны при помощи дюбелей.
  • Крепим агрегат к стене.
  • Врезаем в стояк тройник и ведём подводку к месту установки батареи.
  • Выполняем подключение, используя систему байпасов и регулировочные вентили. В глухой точке ставим кран Маевского для избавления от пузырьков воздуха. Все резьбовые соединения должны быть с использованием прокладок и динамометрического ключа, контролирующего усилие затягивания.
  • После того, как обвязка закончена, запускаем систему и следим за отсутствием протечек и равномерностью нагревания устройств. Если всё работает нормально, работу можем считать завершённой.

Заключение

Монтаж биметаллических радиаторов своими руками – работа довольно сложная и трудоёмкая. Однако она вполне по плечу человеку аккуратному и трудолюбивому. Если будут соблюдены все требования, учтены все нюансы, а все операции будут выполнены старательно и добросовестно, ваши биметаллические изделия будут исправно обогревать жильё, даря уют и комфорт вам и вашим близким.

Подключение радиаторов отопления: способы и схемы

Чтобы в доме было тепло, важно правильно разработать схему отопления. Одна из составляющих ее эффективности — подключение радиаторов отопления. Неважно чугунные, алюминиевые, биметаллические или стальные радиаторы вы собрались ставить, важно выбрать правильный способ их подключения.

Способ подключения радиатора влияет на его теплоотдачу

 

Содержание статьи

Виды систем отопления

Количество тепла, которое будет излучать радиатор отопления, не в последнюю очередь зависит от вида системы отопления и выбранного типа подключения. Чтобы выбрать оптимальный вариант, надо сначала разобраться с тем, какие именно системы отопления бывают и чем они отличаются.

Однотрубные

Однотрубная система отопления  — наиболее экономичный вариант с точки зрения затрат при монтаже. Потому именно такой тип разводки предпочитают в многоэтажных домах, хотя и в частных такая система далеко не редкость. При такой схеме радиаторы включены в магистраль последовательно и теплоноситель проходит сначала через один отопительный пробор, затем поступает на вход второго и так далее. Выход последнего радиатора подключается ко входу котла отопления или к стояку в многоэтажках.

Пример однотрубной системы

Недостаток такого способа разводки — невозможность регулировки теплоотдачи радиаторов. Установив регулятор на любом из радиаторов, вы будете регулировать всю остальную систему. Второй значительный недостаток — разная температура теплоносителя на различных радиаторов. Те, которые находятся ближе к котлу, греются очень хорошо, которые дальше — становятся все холоднее. Это — следствие последовательного подключения радиаторов отопления.

Двухтрубная разводка

Двухтрубная система отопления отличается тем, что в ней имеется две нитки трубопровода — подающий и обратный. Каждый радиатор подключен к обеим, то есть получается, что все радиаторы подключены к системе параллельно. Это хорошо тем, что на вход каждого из них поступает теплоноситель одной температуры. Второй положительный момент — на каждый из радиаторов можно установить терморегулятор и с его помощью изменять количество тепла, которое он выделяет.

Двухтрубная система

Недостаток такой системы — количество труб при разводке системы больше почти в два раза. Зато систему легко можно сбалансировать.

Подробнее о системах отопления частного дома читайте тут. 

Где ставить радиаторы

Традиционно радиаторы отопления ставят под окнами и это не случайно. Восходящий поток теплого воздуха отсекает холодный,  который поступает от окон. Кроме того теплый воздух обогревает стекла, не давая образовываться на них конденсату. Только для этого необходимо чтобы радиатор занимал не менее 70% ширины оконного проема. Только так окно не будет запотевать. Поэтому, При выборе мощности радиаторов, подбирайте ее так, чтобы ширина всей батареи отопления была не менее заданной величины.

Как расположить радиатор под окном

Кроме того необходимо правильно выбрать высоту радиатора и место для его размещения под окном. Его надо разместить так, чтобы расстояние до пола было в районе 8-12 см. Если опустить ниже, неудобно будет убирать, если поднять выше — ногам будет холодно. Также регламентировано расстояние до подоконника — оно должно быть 10-12 см. В этом случает теплый воздух свободно обогнет преграду — подоконник — и поднимется вдоль оконного стекла.

И последнее расстояние, которое надо выдержать при подключении радиаторов отопления — расстояние до стены. Оно должно быть 3-5 см. В таком случае вдоль задней стенки радиатора будут подниматься восходящие потоки теплого воздуха, скорость обогрева помещения улучшится.

Как монтировать и  подключать радиаторы отопления своими руками читайте тут.

Схемы подключения радиаторов

Насколько хорошо будут греться радиаторы зависит от того, как в них подавать теплоноситель. Есть более и менее эффективные варианты.

Радиаторы с нижним подключением

Все радиаторы отопления имеют два типа подключения — боковое и нижнее. С нижним подключением никаких разночтений быть не может. Есть всего два патрубка — входной и выходной. Соответственно, с одной стороны в радиатор подается теплоноситель, с другой отводится.

Нижнее подключение радиаторов отопления при однотрубной и двухтрубной системе отопления

Конкретно, куда подключать подающий, а куда обратный написано в инструкции по монтажу, которая обязательно должна быть в наличии.

Батареи отопления с боковым подключением

При боковом подключении вариантов намного больше: тут подающий и обратный трубопровод можно подсоединить в два патрубка, соответственно, вариантов четыре.

Вариант №1. Диагональное подключение

Такое подключение радиаторов отопления считают наиболее эффективным, его берут за эталон и именно так испытывают производители свои отопительные приборы и данные в паспорте по тепловой мощности — для такой подводки. Все остальные типы подключения менее эффективно отдают тепло.

Диагональная схема подключения радиаторов отопления при двухтрубной и однотрубной системе

Все потому, что при диагональном подключении батарей горячий теплоноситель подается на верхний вход с одной стороны, проходит через весь радиатор и выходит с противоположной, нижней стороны.

Вариант №2. Одностороннее

Как понятно из названия, подключаются трубопроводы с одной стороны — подача сверху, обратка — снизу. Этот вариант удобен, когда стояк проходит сбоку от отопительного прибора, что часто бывает в квартирах, потому именно такой тип подключения обычно и преобладает. Когда теплоноситель подводится снизу, такая схема используется нечасто — не очень удобно располагать трубы.

Боковое подключение для двухтрубной и однотрубной системы

При таком подключении радиаторов эффективность нагрева только чуть ниже — на 2 %. Но это только если секций в радиаторах немного — не более 10. При более длинной батарее ее дальний от край будет плохо греться или вообще останется холодным. В панельных радиаторах для решения проблемы ставят удлинители потока — трубки, которые доводят теплоноситель чуть дальше середины. Такие же устройства можно устанавливать в алюминиевые или биметаллические радиаторы, улучшая при этом теплоотдачу.

Вариант №3. Нижнее или седельное подключение

Из всех вариантов седельное подключение радиаторов отопления самое малоэффективное. Потери составляют примерно 12-14%. Но данный вариант самый незаметный — трубы обычно укладываются по полу или под ним и такой способ наиболее оптимальный с точки зрения эстетики.  А чтобы потери не влияли на температуру в помещении, можно радиатор взять чуть более мощный чем требуется.

Седельное подключение радиаторов отопления

В системах с естественной циркуляцией такой тип подключения делать не стоит, а вот при наличии насоса работает она неплохо. В некоторых случаях даже не хуже бокового. Просто при какой-то скорости движения теплоносителя возникают вихревые потоки, вся поверхность разогревается, повышается теплоотдача. Данные явления пока не изучены до конца, потому спрогнозировать поведение теплоносителя пока невозможно.

Термостатика — обзор | Темы ScienceDirect

10.3.2 Пример 2: От существующей централизованной системы водяного отопления к интеллектуальной и энергоэффективной

Как представлено в Разделе 10.2.4, установка термостатических клапанов радиатора с измерением тепла является одной из наиболее -использованные меры по энергоэффективности для систем централизованного водяного отопления. Доступны различные типы установок для отвода тепла и контроля температуры в существующих системах водяного отопления.Их сдерживает тот факт, что гидравлическая схема контура горячего водоснабжения не позволяет проводить прямой учет тепла для каждой квартиры, и поэтому необходимо применять счетчики косвенного нагрева.

По сравнению с установкой ручных термостатических радиаторных клапанов, связанных с косвенными счетчиками тепла, установка моторизованных термостатических радиаторных клапанов, связанных с информационной системой для учета тепла, является очень перспективной из-за автоматизированного регулирования, основанного на абсолютной настройке: точечная температура.Напротив, ручные TRV основаны на шкале и не могут выполнять реальный контроль температуры в определенной зоне нечувствительности. Кроме того, благодаря информационной системе пользователи получают информацию о потреблении энергии в режиме реального времени и могут напрямую воздействовать на систему, чтобы ограничить потребление энергии.

Качество и количество собираемых данных позволяет отслеживать и, при необходимости, изменять работу и управление установкой. Таким образом, эта система имеет то преимущество, что централизованная система отопления без учета тепла превращается в интеллектуальную и энергоэффективную систему отопления, заменяя только клапаны и насосы контуров, добавляя счетчики тепла и архитектуру беспроводного управления, без каких-либо изменений в гидравлическом контуре.

В большинстве случаев установка такой системы выполняется одновременно с установкой новых теплогенераторов (например, конденсационных котлов), чтобы использовать возможность снижения температуры горячей воды в мягкое время года, которое вызывает тепловыделение. позволять.

Внедрение моторизованных термостатических клапанов, связанных с информационной системой для учета тепла, позволяет получать данные, относящиеся к фактическому включению радиаторов, времени открытия и закрытия клапанов, а также другую информацию, полезную для выполнения подробной калибровки расчетных режимов зданий, если они используются для оценки экономии энергии при модернизации.

В многоквартирном здании эта система состоит из сети контроллеров / исполнительных механизмов, установленных на отдельных радиаторах каждой единицы здания и работающих на двух разных уровнях, в зависимости от структуры, представленной на рис. 10.4. В каждой квартире можно с помощью цифрового пульта дистанционного управления или удаленно через центральный модем GSM для удаленного управления установить уставку температуры воздуха и соответствующие дневные и недельные профили. Затем квартирные блоки подключаются по беспроводной сети к центральному блоку для сбора и обработки данных.На основном уровне пользователь может установить все общие параметры, полезные для распределения потребления энергии (номинальная теплоемкость радиаторов, температура подачи и номинальная температура обратки, тип радиатора и т. Д.). Термостатический клапан каждой отдельной комнаты действует в соответствии с заданным значением в квартире с дополнительной возможностью вручную изменять заданное значение ± 2 ° C, чтобы учесть различное расположение радиаторов в помещении.

Система способна предоставлять данные о работе и потреблении энергии на ежедневной или годовой основе (отопительный сезон) для отдельной квартиры или всего здания.Измерения проводятся каждые 15 минут.

Информационная система отслеживает и рассчитывает среднесуточные значения температуры наружного воздуха и воздуха в помещении, а также минимальные зарегистрированные дневные температуры.

Кроме того, на станции центрального отопления система измеряет температуру подачи и температуру возврата горячей воды, чтобы определить значение коэффициента частичной нагрузки на радиаторы.

Заявленная максимальная погрешность измерения энергопотребления равна ± 2.5%, что ниже порога в 5%, который является нормативным значением в Италии.

Некоторые данные, полученные из заявки на многоквартирный дом из 56 квартир от 50 до 120 м 2 2 кондиционируемой площади, расположенной в Италии (Турин), приведены ниже (Fabrizio et al., 2015). Из частотного распределения сезонного измеренного потребления энергии можно заметить значительные колебания между 30 кВтч / м 2 в год и 70 кВтч / м 2 в год. Представляя данные об удельном измеренном потреблении энергии в зависимости от общей поверхности теплопередачи в квартире, выясняется, что существует какая-то прямая корреляция между общей поверхностью теплопередачи и удельным потреблением.С помощью беспроводной системы климат-контроля также можно получать ежедневные значения средней минимальной температуры в квартирах. Эти значения представлены на рис. 10.6, где показано, что значения между 19 ° C и 21 ° C зарегистрированы более чем в 67% наблюдений. Также в этом случае имеется большой разброс данных, особенно для значений в этом диапазоне. Правдоподобно предположить, что более низкие значения поддерживаются в случае «неблагополучных» квартир (с поверхностями теплопередачи, отличными от стен, такими как первый этаж, верхний этаж, углы и т. Д.)

Рисунок 10.6. Среднесезонные среднесуточные значения средней минимальной температуры в каждой квартире.

Принимая во внимание компромисс между общей поверхностью теплопередачи, контролируемым потреблением энергии и минимальной температурой воздуха, можно сначала отметить, что для фиксированной площади теплопередачи не существует четкой корреляции между потреблением энергии и средним минимумом. температуры, особенно в отношении поверхностей с очень высоким содержанием диспергентов. Аналогичным образом, существует слабая корреляция между общей поверхностью теплопередачи и потреблением энергии, хотя можно отметить, что в квартирах с высокими поверхностями теплопередачи значения температуры находятся в диапазоне 19–17 ° C с более высоким или низким потреблением энергии. .В этих случаях ясно, насколько приоритетным для пользователя является поддержание комфортной температуры за счет снижения энергопотребления. Аналогичным образом, квартиры с уменьшенной общей поверхностью теплообмена регистрируют температуру обычно в диапазоне 22–19 ° C. Опять же, особенно в случае квартир с уменьшенной общей поверхностью теплопередачи, существует большой разброс в удельном потреблении (от 15 до 60 кВтч / м 2 ) даже при наличии подобных.

По окончании первого сезона эксплуатации время использования радиатора сократилось до 62%; это значение представляет собой соотношение между тепловой энергией, излучаемой радиаторами, и тепловой энергией, которую радиаторы выделяли бы, если бы TRV всегда были открыты.В некотором роде это значение дополняет сокращение энергопотребления, поскольку оно указывает на то, что потребление энергии было снижено примерно на 40%, но его следует рассматривать вместе с кривой климатической регулировки теплогенераторов (фактически, низкая подача энергии). температура воды увеличивает время открытия ТРВ, но также увеличивает эффективность преобразования конденсационных котлов). В целом также можно заметить, что радиаторы в существующих зданиях обычно имеют большие размеры. Это причина, по которой автоматизированные TRV могут обеспечить экономию энергии порядка 40–45%, что выше, чем у ручных TRV, как это было показано в предыдущих тематических исследованиях.

С практической точки зрения информационная система этой интеллектуальной системы отопления позволяет не только экономить энергию, но и получать полезную информацию, чтобы понять, в чем заключаются проблемы и недостатки в энергоменеджменте здания. После внедрения такой вид системы снижает перегрев большинства внутренних помещений, но в то же время для некоторых помещений, т. Е. Наиболее неблагополучных, существует риск возникновения условий теплового комфорта, которые хуже, чем те, которые имели место до установка TRV, не зависящая от пользователя.Следовательно, должна быть предусмотрена система разделения затрат на тепловую энергию, включающую разумную фиксированную ставку, в отличие от переменной ставки, которая учитывает потребляемую энергию, что увеличивает неэффективность системы в зависимости от того, насколько ниже соотношение между отоплением энергия, излучаемая радиаторами, и тепловая энергия, которую радиаторы выделяли бы, если бы TRV всегда были открыты. Фактически, только увеличение фиксированной нормы затрат на электроэнергию может сделать приемлемой реализацию мер по модернизации энергоснабжения неблагополучных квартир, таких как изоляция чердаков, полов, наружных стен и т. Д.

Это дает повод для дальнейшего рассмотрения, связанного с возможностью определить экономию энергии и экономию, которая может быть достигнута с помощью мер по повышению энергоэффективности, не на основе потребления энергии до установки устройств терморегуляции, а, наоборот, на Это основа снижения энергопотребления, которое наблюдается, если избежать перегрева помещений с помощью соответствующих систем контроля температуры. В этой области можно выполнить подробное динамическое моделирование зданий, откалиброванное на данных мониторинга из информационных систем, таких как рассмотренная здесь.

Регуляторы температуры, системы, алгоритмы, методы и типы термостатов

Термостаты (или регуляторы температуры) — это устройства, которые используются для измерения и регулирования температуры воздуха, жидкости, такой как вода, или других процессов. В то время как термометры обеспечивают считывание или значение температуры, термостаты предназначены для повышения или понижения температуры до желаемой точки по сравнению с ее текущим значением.

Типы регуляторов температуры

Изображение предоставлено: Fahroni / Shutterstock

Термостаты

находят применение в различных продуктах и ​​отраслях, некоторые из которых являются привычными потребительскими товарами.В этом руководстве кратко описаны распространенные типы термостатов как по применению, так и по конструкции / функциональности. Кроме того, в этом руководстве также представлена ​​дополнительная информация о типах регуляторов температуры, используемых в производственных процессах.

Типы термостатов (регуляторов температуры) по применению

Термостаты контроля нагрева

Контроль температуры нагревателя, пожалуй, наиболее распространенная область применения термостатов, и, безусловно, та, с которой знакомо большинство людей.Термостаты регулирования температуры используются для регулирования температуры воздуха в помещении. Эти устройства подключаются к системе контроля температуры отопления, такой как котел или печь, и отправляют электрический сигнал в эту систему, когда есть запрос на тепло, что означает, что термостат обнаружил, что температура в помещении упала ниже желаемого (установленного ) температура. Этот сигнал активирует управляющее реле, чтобы начать процесс розжига котла или печи и подачи тепла через принудительный воздух или через радиаторы.Когда температура повысится до желаемой, сигнал термостата отключается и котел или печь отключается.

Термостаты регулирования температуры

Другие распространенные продукты включают термостаты для регулирования температуры. Термостаты электрических нагревателей определяют температуру и включают в себя питание электрических нагревательных элементов по мере необходимости для обогрева комнаты. Вентиляторы охлаждения оснащены термостатами управления вентиляторами, которые можно использовать для включения и выключения вентилятора по мере необходимости в зависимости от температуры воздуха в помещении.Термостаты электрогрелки работают аналогичным образом, ограничивая температуру, до которой может подняться электрогрелка, с целью предотвращения случайных ожогов. Термостаты для бассейнов используются в нагревателях бассейнов, чтобы определять температуру воды в бассейне, когда она циркулирует через нагреватель бассейна. Как и в случае с термостатами системы контроля температуры нагрева, описанными ранее, термостат бассейна будет включать и выключать нагреватель бассейна по мере необходимости, чтобы повысить температуру воды до желаемой уставки.В бытовых системах горячего водоснабжения используются термостаты горячей воды, также называемые аквастатами, которые определяют, когда водонагреватель должен включиться, чтобы создать горячую воду для использования.

Автомобильные термостаты

В автомобильной промышленности термостаты играют важную роль и появляются в нескольких местах. Автомобильные термостаты контролируют температуру в салоне и используются для добавления тепла или активации системы кондиционирования воздуха для поддержания уровня комфорта в салоне автомобиля. Термостаты систем охлаждения автомобилей и самолетов стремятся регулировать температуру охлаждающей жидкости в автомобиле или самолете, оставаясь закрытыми в условиях запуска холодного двигателя, а затем открываясь, чтобы позволить жидкости циркулировать к радиатору или теплообменнику при повышении температуры двигателя.Дополнительное управление термостатом используется в системе охлаждения для измерения температуры охлаждающей жидкости или двигателей, активируя электрические вентиляторы, чтобы втягивать дополнительный воздух через радиатор для охлаждения жидкости по мере необходимости.

Контрольные термостаты

Термостатический контроль также применяется к критическим компонентам системы. Масляные термостаты предназначены для контроля температуры смазочной жидкости в машинах и двигателях, чтобы гарантировать защиту двигателя. Вращающиеся валы, поддерживаемые подшипниками, могут использовать термостаты подшипников для контроля температуры подшипника, что может помочь предсказать наступление условий, требующих обслуживания.Термостаты дизельных двигателей предназначены для поддержания надлежащей температуры двигателя на больших транспортных средствах, таких как тягачи с прицепами, где потребность в охлаждении будет зависеть от рабочей нагрузки. В некоторых конструкциях используются два термостата, которые функционируют как клапаны с регулируемой температурой и регулируют количество охлаждающей жидкости, поступающей в радиатор автомобиля.

Термостаты используются в других учреждениях, например в лабораториях, для поддержания температуры процесса. Термостаты для опасных зон используются в приложениях, где может существовать риск присутствия взрывоопасной атмосферы.Существуют даже термостаты торговых автоматов, которые используются для контроля температуры внутри этих автоматов, чтобы сохранять напитки холодными или предотвращать таяние закусок, таких как шоколадные батончики.

Типы термостатов по конструкции / функциям

Существует несколько конструкций термостатов, в которых используются различные материалы и их свойства, чтобы определять изменения температуры и отправлять управляющие сигналы в другие системы.

Термостаты Mercurial

Один из старейших типов термостатов — ртутные термостаты.Эта конструкция использует тепловую катушку и ртутный переключатель, который управляется ручным диском или рычагом на термостате. Когда установка температуры повышается поворотом шкалы, действие приводит к закрытию ртутного переключателя и отправке сигнала системе обогрева на включение. Когда воздух начинает нагреваться, изменение температуры вызывает разматывание тепловой катушки, что размыкает ртутный переключатель и отключает систему обогрева.

Биметаллические термостаты

Еще одна испытанная конструкция термостата — биметаллический термостат.Биметаллическая полоса состоит из двух металлов, таких как латунь и железо, коэффициенты теплового расширения которых различны. Когда термостат настроен на нагрев, контур замыкается. При повышении температуры в помещении биметаллическая полоса изгибается и размыкает электрическую цепь, вызывая отключение системы обогрева.

Электронные термостаты

В то время как ртутные и биметаллические термостаты являются электрическими термостатами и управляются вручную, большинство современных термостатов представляют собой электронные термостаты, в том числе программируемые цифровые термостаты.Преимущество этих устройств заключается в том, что они дают возможность устанавливать профили для отопления и охлаждения в соответствии с потребностями жителей здания. Эти термостаты предлагают отдельные настройки для разного времени дня и дней недели, так что вечером может быть прохладнее, когда люди спят, и тепло утром или днем, когда люди бодрствуют. Новейшие технологии для термостатов иногда называют интеллектуальными термостатами и используют беспроводную связь, что позволяет пользователям использовать мобильные телефоны и планшеты для изменения температурных условий по запросу.

Некоторые конструкции термостатов называются термостатами линейного напряжения, что означает, что сам термостат переключает электрические сигналы на стандартном уровне рабочего напряжения (120 В / 240 В в жилых помещениях в США). Напротив, большинство термостатов переключают сигнал управления с более низким напряжением. , отправив его в цепь реле, предназначенную для переключения сетевого напряжения, например, для управления циркуляционными насосами в котлах.

Пневматические термостаты

Пневматические термостаты будут регулировать выходное давление воздуха в зависимости от температуры воздуха в помещении.Пневматические термостаты бывают двух типов — прямого действия (DA) и обратного действия (RA). Устройства прямого действия будут производить более высокое давление на выходе при повышении температуры в помещении; устройства обратного действия производят более низкое выходное давление при повышении температуры в помещении.

Погружные термостаты

В погружных термостатах

обычно используется погружной нагреватель / охладитель и насос для регулирования температуры ванны с жидкостью в лабораторных, медицинских или научных целях.

Дистанционные термостаты

Термостаты с дистанционной лампой и термостаты с дистанционным зондированием имеют термодатчик, расположенный на некотором расстоянии от блока управления термостатом, который в некоторых случаях отправляет показания по беспроводной сети.

Методы контроля температуры для производственных операций

Контроль температуры на производстве — важнейшая часть правильного формирования продукта. Если температура опускается выше или ниже идеального диапазона, необходимого для конкретной стадии производственного процесса, результаты могут быть вредными — неправильно приклеенные покрытия, ослабленный основной материал или общий скомпрометированный компонент — поэтому становится все более важным, чтобы производитель не только определять правильную температуру для каждого этапа, но также контролировать температуру внутри машины и получать соответствующую обратную связь.

Контроллеры температуры

в производственных операциях выполняют именно эту функцию: они обеспечивают правильную работу машины, измеряя температуру на разных этапах процесса и сравнивая данные с запрограммированными температурными характеристиками. В результате производители могут быстро и легко обнаруживать неисправности оборудования, связанные с температурой, и при необходимости устранять их.

Существует три основных типа регуляторов температуры, которые используются для контроля температуры во время производственных процессов: двухпозиционные, пропорциональные и ПИД-регуляторы.

Включение / выключение контроля температуры

Двухпозиционный терморегулятор — наименее затратный из всех типов управления, а также самый простой с точки зрения принципа действия. Управление либо включено, либо выключено — если температура падает ниже определенной точки, система управления подает сигнал машине, чтобы она включила повышение температуры. Аналогичным образом, если температура поднимается выше определенной точки, срабатывает управление, чтобы дать машине команду снизить температуру. Распространенным примером двухпозиционных систем является бытовой термостат.Когда температура падает ниже определенной точки, контроллер запускает нагреватель, чтобы поднять температуру до запрограммированного значения. С кондиционированием воздуха все работает по-другому: если температура поднимается выше определенной точки, контроллер включает кондиционер, понижая температуру до запрограммированной нормы.

Регуляторы включения / выключения

часто используются в процессах, где изменение температуры происходит очень медленно, и точный контроль температуры не требуется.

Пропорциональный контроль

В отличие от регуляторов включения / выключения, которые реагируют только при достижении установленного предела, пропорциональные регуляторы предназначены для реагирования на изменение температуры до того, как она выскользнет из желаемого диапазона.По сути, пропорциональные регуляторы увеличивают или уменьшают подачу питания по мере того, как температура достигает своего верхнего или нижнего предела или уставки, что замедляет или ускоряет нагреватель и помогает стабилизировать температуру.

Температурный диапазон, в котором пропорциональные регуляторы либо уменьшают, либо увеличивают подачу питания на медленный или быстрый нагрев, известен как «диапазон пропорциональности». Если температура достигает нижнего или верхнего заданного значения, регулятор затем функционирует как полный контроль включения / выключения — температура либо полностью включается для повышения температуры, либо полностью выключается, чтобы понизить температуру.Когда температура находится в пределах диапазона пропорциональности, а электропитание уменьшается или увеличивается, нагрев увеличивается или уменьшается в зависимости от того, насколько далеко температура от заданного значения.

ПИД-регулятор (пропорционально-интегрально-производная)

Этот регулятор сочетает в себе пропорциональное регулирование с интегральным и производным регулированием (ПИД). Система PID, работающая в пределах диапазона пропорциональности так же, как и пропорциональное регулирование, имеет две дополнительные функции, которые улучшают общее регулирование температуры.Пропорциональная функция позволяет контроллеру реагировать на текущие обстоятельства и соответствующим образом настраиваться. Интегральное значение учитывает сумму недавних событий (другими словами, прошлые ритмы пропорционального управления), а производное значение определяет соответствующую реакцию на основе скорости изменения прошлых ритмов. Вместе эти три используют текущие данные, прошлые данные и скорость, с которой данные изменяются, чтобы установить алгоритм контроля температуры для конкретного случая. Компенсация температурной погрешности между параметром процесса и уставкой позволяет поддерживать стабильную температуру.

Соображения

При принятии решения о том, какой вид управления лучше всего подходит для конкретного процесса, следует помнить о нескольких моментах. Во-первых, рассмотрите тип входного датчика (термопара или RTD) и температурный диапазон, который требуется для процесса. Во-вторых, рассмотрите форму, в которой должен быть представлен выход: электромеханическое реле, SSR или аналоговый выход. В-третьих, определитесь, какой алгоритм регулирования температуры нужен (вкл / выкл, пропорциональный, PID). Наконец, рассмотрите количество и тип выходов, необходимых для приложения, таких как нагрев, охлаждение, сигнализация и ограничение.Как только эти факторы будут определены, будет намного проще определить, какой тип регулятора температуры подходит для конкретного применения.

Сводка

В этой статье представлен краткий обзор распространенных типов термостатов с разбивкой по применению и дизайну / функциям. Кроме того, был представлен обзор регулирования температуры в производственных процессах. Для получения информации по дополнительным темам обратитесь к другим нашим руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

Источники:
  1. http://asecertificationtraining.com/diesel-engine-thermostats/
  2. https://www.trane.com
  3. https://www.globescientific.com/images/files/Immersion%20Thermostats.pdf
  4. http://www.airheaters.info/thermostats-and-humidistats/remote-bulb-thermostats.html
  5. https://www.alanmfg.com/blog/zone-control-systems/

Прочие «виды» изделий

Больше от Instruments & Controls

Основные принципы однотрубных паровых радиаторов

В однотрубных паровых установках пар поступает из котла в радиаторы, где вытесняет холодный воздух, выталкивая его через вентиляционное отверстие на радиаторе.Вентиляционное отверстие закрывается автоматически, когда радиатор наполняется паром. Тепловая энергия пара затем передается в комнату, при этом пар охлаждается и конденсируется в воду, которая собирается в нижней части радиатора. Затем этот конденсат снова течет обратно по той же единственной трубе.

Из-за того, что пар и вода протекают в противоположных направлениях по одной и той же трубе, диаметр этой трубы обычно составляет более 1 дюйма. Таким образом, однотрубные радиаторы легко отличить по одной, довольно большой трубе, присоединенной к ним, всегда под прямым углом. снизу и вентиляционное отверстие, прикрепленное к противоположной стороне, обычно на половине высоты радиатора (см. ниже).

Ознакомьтесь с нашей коллекцией паровых радиаторов здесь.

Ознакомьтесь с введением в двухтрубные паровые системы здесь.

Компоненты однотрубного парового радиатора

Впускной или регулирующий клапан должен иметь большое внутреннее отверстие: минимум 1 дюйм для радиаторов на 5000 БТЕ или меньше; минимум на 1 дюйма больше. На однотрубном паровом радиаторе он должен быть полностью открытым или полностью закрытым. Дросселирование клапана (оставление его наполовину открытым) может привести к очень шумному паровому удару.Тепло от однотрубного парового радиатора регулируется путем ограничения выхода воздуха.


Клапан однотрубного парового радиатора должен быть полностью открыт или полностью закрыт, а не между ними.


Отверстия для пара позволяют воздуху выходить из радиатора, но автоматически закрываются, когда радиатор заполняется паром. Вентиляционное отверстие использует два механизма. Первая представляет собой биметаллическую полосу, изготовленную из двух разных металлов, так как пар нагревает клапан, он заставляет один металл изгибаться больше, закрывая клапан, и настроен на пружинное закрытие чуть ниже точки кипения.Второй механизм — это привод, наполненный водой и спиртом, температура кипения которого чуть ниже температуры пара. Когда жидкость внутри исполнительного механизма закипает, она расширяется и, таким образом, закрывает вентиляционное отверстие, предотвращая выход пара из радиатора.

Добавление термостатического клапана между радиатором и вентиляционным отверстием позволяет регулировать температуру, ограничивая выходящий воздух и, следовательно, пар, который может входить. Для паровых радиаторов с термостатическим управлением требуется вакуумный прерыватель, чтобы конденсат всегда мог возвращаться в котел.Радиаторы Castrads для однотрубного пара поставляются в стандартной комплектации.

Какие радиаторы использовать с однотрубным паром?

Чугун — действительно проверенный временем материал для парового отопления. Пар создает большую нагрузку на систему: большие перепады температуры заставляют металл расширяться и сжиматься при каждом цикле нагрева; кислотные или щелочные условия в зависимости от химического состава воды; и, если система плохо спроектирована или не обслуживается, сильные удары от парового молота.Чугун также образует пассивное покрытие ржавчины, защищающее основную часть материала от дальнейшего окисления. Все это идет вразрез с использованием стальных тонкостенных радиаторов со сварными стыками, они просто недолговечны.

Мы предлагаем только чугунные радиаторы для паровых систем, а не стальные. Что касается соединений клапана на паре, мы рекомендуем только резьбовые механические соединения со стальными или латунными трубами. Хотя компрессионные фитинги идеально подходят для гидравлических систем, мы предпочитаем проверенную временем надежность резьбового соединения.

Ознакомьтесь с нашей подборкой паровых радиаторов здесь.

Клапан какого размера?

Мы рекомендуем 1-дюймовый клапан для радиаторов мощностью до 5000 БТЕ или меньше и клапаны на 1 ¼ дюйма выше этого. Читайте также: Как это работает: Гидравлическое отопление.

Дополнительная литература

Дэн Холохан: новый взгляд на утраченное искусство парового отопления
Дэн Холохан: озеленение пара

Радиаторы, конвекторы и обогреватели: радиаторные клапаны

Радиаторные клапаны

Для эффективной работы радиаторов требуются различные клапаны.

Эти клапаны (или вентиляционные отверстия ) используются для выпуска воздуха из радиатора при первом запуске системы отопления. Выбор клапана будет зависеть от требований конкретной системы.

Клапаны, работающие вместе с радиаторами, выполняют четыре основных функции:

1. Подача и регулирование подачи пара или горячей воды.

2. Удаление воздуха, выделяющегося при конденсации.

3. Вытеснение воздуха из помещений, заполненных паром или горячей водой.

4. Удаление конденсата.

Радиаторные клапаны (с набивкой или без упаковки), ручные или автоматические воздушные клапаны и термостатические выпускные клапаны (сифоны) используются для выполнения вышеупомянутых функций.

Клапан радиатора с набивкой представляет собой обычный паровой клапан низкого давления, который имеет сальник и волокнистую набивку для предотвращения утечки вокруг штока (см. Рисунок 2-14).Возражение против этого типа клапана — частая потребность в регулировке и обновлении набивки для сохранения герметичности соединения. Для полного открытия этих клапанов также требуется много оборотов штока.

Бесконтактный радиаторный клапан — это клапан, не имеющий никакого уплотнения. Уплотнение достигается с помощью диафрагмы (см. Рисунок 2-15) или сильфона (см. Рисунок 2-16). На каждом клапане нет соединения между исполнительным элементом (шток и винт) и клапаном, который герметично закрывается; следовательно, утечки быть не может.В устройстве с диафрагмой для открытия клапана используется пружина. В конструкции сильфона нет пружины; заплечик на конце штока работает в подшипнике клапана внутри сильфона.

В некоторых так называемых бесконтактных радиаторных клапанах для обеспечения герметичного соединения используются пружинные диски. Несмотря на то, что пружинные диски называются безупаковочными, они образуют металлический эквивалент набивки.

Для удаления воздуха из радиаторов используются как ручные, так и автоматические воздушные клапаны. Ручные клапаны плохо приспособлены для этой функции, потому что им обычно не уделяют должного внимания.Воздух

постоянно образуется в радиаторе и должен удаляться по мере образования. После того, как воздушный клапан остается закрытым в течение некоторого времени, радиатор постепенно наполняется воздухом (или становится связанным с воздухом), как показано на Рисунке 2-17, при этом воздух находится внизу, а пар — вверху. При открытии клапана (см. Рисунок 2-18) воздух выталкивается поступающим паром. Радиатор постепенно наполняется паром, пока он не начнет выходить из воздушного клапана (см. Рисунок 2-19). На этом этапе воздушный клапан должен быть закрыт.

Автоматический воздушный клапан — одна из разновидностей термостатического клапана (см. Рисунок 2-20). Автоматическое управление стало возможным благодаря биметаллическому элементу, содержащемуся в клапане. Для обеспечения автоматических действий обычно используются следующие принципы:

1. Расширение и сжатие металлов.

2. Расширение и сжатие жидкостей.

3. Плавучесть плавучести.

4. Расширение воздуха.

Клапан

закрыт, перекрывая выход пара (см. Рисунок 2-23). В случае, если радиатор будет затоплен водой, поступающая дополнительная вода заставит поплавок подтолкнуть клапан и предотвратить утечку воды (см. Рисунок 2-24).

Поскольку автоматический воздушный клапан используется только для выпуска воздуха из радиатора, его следует отличать от термостатического выпускного клапана. Термостатический выпускной клапан открывается для воздуха и конденсата и закрывается для пара.Низкая температура воздуха и конденсация заставляют биметаллический элемент сжиматься и

открывает клапан, тогда как относительно высокая температура пара заставляет элемент расширяться и закрывать клапан.

Хотя термостатический вытяжной клапан иногда называют ловушкой, этот термин более правильно использовать для обозначения более крупного блока, не подключенного к радиатору и имеющего способность отводить конденсат из большой сети. В отличие от термостатического клапана, сифон перерабатывает только конденсат, а не воздух.

Сильфон, заполненный жидкостью, используется на некоторых термостатических клапанах в качестве исполнительного элемента вместо биметаллического устройства.

Принцип работы сильфонного термостатического клапана Trane показан на Рисунках 2-25, 2-26, 2-27 и 2-28.

Дополнительная информация о клапанах и принципах их работы содержится в главе 9 тома 2 («Клапаны и установка клапанов»).

Входящие поисковые запросы:

Основы системы отопления и охлаждения: Советы и рекомендации

После того, как воздух нагрелся или охладился в источнике тепла / холода, его необходимо распределить по различным комнатам вашего дома.Это может быть достигнуто с помощью систем с принудительной подачей воздуха, гравитации или излучения, описанных ниже.

Системы с принудительной подачей воздуха

Система с принудительной подачей воздуха распределяет тепло, производимое печью, или холод, производимый центральным кондиционером, через вентилятор с электрическим приводом, называемый нагнетателем, который заставляет воздух через систему металлических каналов комнаты в вашем доме. По мере того, как теплый воздух из печи втекает в комнаты, более холодный воздух в комнатах течет вниз по другому набору воздуховодов, называемых системой возврата холодного воздуха, в печь для обогрева.Эта система регулируется: вы можете увеличивать или уменьшать количество воздуха, проходящего через ваш дом. В центральных системах кондиционирования воздуха используется та же система принудительной подачи воздуха, включая вентилятор, для распределения холодного воздуха по комнатам и возврата более теплого воздуха для охлаждения.

Проблемы с системами принудительной подачи воздуха обычно связаны с неисправностью вентилятора. Воздуходувка также может быть шумной и добавляет стоимость электроэнергии к стоимости топочного топлива. Но поскольку в ней используется воздуходувка, система принудительной подачи воздуха представляет собой эффективный способ направлять переносимое по воздуху тепло или холодный воздух по всему дому.

Gravity Systems

Gravity Systems основаны на принципе подъема горячего воздуха и опускания холодного воздуха. Следовательно, гравитационные системы нельзя использовать для распределения холодного воздуха из кондиционера. В гравитационной системе печь располагается рядом с полом или под ним. Нагретый воздух поднимается по воздуховодам и попадает в пол по всему дому. Если печь расположена на первом этаже дома, тепловые регистры обычно располагаются высоко на стенах, потому что регистры всегда должны быть выше печи.Нагретый воздух поднимается к потолку. По мере того, как воздух охлаждается, он опускается, входит в каналы возвратного воздуха и возвращается в печь для повторного нагрева.

Другой основной системой распределения для отопления является лучистая система. Источником тепла обычно является горячая вода, которая нагревается печью и циркулирует по трубам, встроенным в стену, пол или потолок.

Радиантные системы

Радиантные системы работают, обогревая стены, пол или потолок комнат или, чаще, обогревая радиаторы в комнатах.Затем эти предметы нагревают воздух в комнате. В некоторых системах используются электрические нагревательные панели для выработки тепла, которое излучается в комнаты. Как и гравитационные настенные обогреватели, эти панели обычно устанавливают в теплом климате или там, где электричество относительно недорогое. Излучающие системы нельзя использовать для распределения холодного воздуха от кондиционера.

Радиаторы и конвекторы, наиболее распространенные средства распределения лучистого тепла в старых домах, используются в системах водяного отопления. Эти системы могут зависеть от силы тяжести или от циркуляционного насоса для циркуляции нагретой воды от котла к радиаторам или конвекторам.Система, в которой используется насос или циркуляционный насос, называется гидравлической системой.

Современные системы лучистого отопления часто встраиваются в дома, построенные на фундаменте из бетонных плит. Под поверхностью бетонной плиты прокладывается сеть водопроводных труб. Когда бетон нагревается трубами, он нагревает воздух, соприкасающийся с поверхностью пола. Плита не должна сильно нагреваться; в конечном итоге он будет контактировать с воздухом во всем доме и нагревать его.

Излучающие системы — особенно когда они зависят от силы тяжести — подвержены ряду проблем.Трубы, используемые для распределения нагретой воды, могут забиться минеральными отложениями или наклониться под неправильным углом. Также может выйти из строя бойлер, в котором вода нагревается у источника тепла. В новых домах системы горячего водоснабжения устанавливают редко.

В следующем разделе вы узнаете, как термостат и другие элементы управления используются для поддержания микроклимата в помещении, создаваемого вашими системами отопления и охлаждения.

Термостат — Designing Buildings Wiki

Термостат — это компонент, который является частью системы управления зданием, помогая поддерживать постоянную заданную температуру.Он делает это, измеряя температуру системы и регулируя входную мощность нагрева или охлаждения для достижения требуемой уставки. Термостаты обычно используются в центральном отоплении, кондиционировании воздуха, системах отопления, вентиляции и кондиционирования воздуха, водонагревателях, а также в таких устройствах, как холодильники и духовки.

Оно образовано от греческих слов «термос» (что означает горячий или жаркий) и «стат» (означает стоящий или неподвижный).

Термостат работает как система управления «замкнутым контуром», в которой выходной сигнал влияет на вход для поддержания желаемого выходного значения.Это достигается за счет обратной связи. Например, котел может иметь температурный термостат , который контролирует уровень теплового комфорта здания и отправляет сигнал обратной связи, чтобы гарантировать, что контроллер поддерживает заданную температуру.

Обычные типы термостата используют биметаллические ленты или газонаполненные сильфоны.

Биметаллическая полоса состоит из двух кусков металла разных типов, скрепленных вместе в полосу, образующую мост в электрической цепи, подключенной к системе нагрева или охлаждения.Когда полоса изменяет температуру, два металла расширяются или сжимаются по-разному, слегка изгибая или выпрямляя полосу и, в конечном итоге, размыкает или замыкает цепь и, таким образом, активирует или деактивирует систему нагрева или охлаждения. Недостатком биметаллических полос является то, что они могут относительно медленно реагировать на изменения температуры.

Газонаполненные сильфоны заключены в пару металлических дисков. Газ в сильфоне расширяется при повышении температуры, раздвигая диски и отключая систему.Этот тип термостата обычно реагирует быстрее, чем термостат из биметаллической ленты.

Термостаты могут работать независимо или как часть более сложной системы. Например, в большинстве бытовых радиаторов есть термостатический радиаторный клапан, который позволяет локально контролировать количество горячей воды, попадающей в радиатор. Кроме того, котел может иметь органы управления, позволяющие регулировать температуру воды на выходе из котла.Затем обычно имеется центральный термостат , который позволяет жильцам регулировать температуру в здании или его части в целом.

Некоторые термостаты могут быть подключены к другим системам управления, таким как таймеры или более сложные системы автоматизации и управления зданиями (BACS).

В последнее время возросла популярность «умных» термостатов , которые позволяют управлять температурой в здании удаленно с помощью смартфона, планшета или другого устройства.Пользователи могут запрограммировать термостат на включение или выключение обогрева в определенное время, а некоторые модели могут «разумно» узнать о здании и о том, сколько времени требуется для нагрева или охлаждения, а также о предпочтениях и привычках пассажиры. Это может помочь более эффективно использовать энергию.

Как подключить термостат [Руководство по монтажу проводов]

Они возвращаются домой и пылятся с ящика для инструментов. Никогда не читая инструкции по установке термостата, они приступают к замене термостата.Некоторым удается заменить термостат, а некоторым нет. Те, кто, скорее всего, прочитал некоторые инструкции по установке термостатов или попросил кого-то прочитать инструкции по установке термостатов для них. Наконец, те, кто не добился успеха, в конечном итоге вызывают профессионала для установки нового термостата.

Статья с советами по успешной установке термостата (открывается в новом окне)

Рекомендации по установке термостата

Основной совет для большинства людей — позвонить специалисту по HVAC, если что-то не так.Будь то термостат или система HVAC. Проблема может быть не в термостате. И вы можете усугубить проблему, которая в конечном итоге будет стоить дороже. Кроме того, если у вас есть многозонная система, высокоэффективный тепловой насос или даже просто тепловой насос, обычная сплит-система переменного тока и бойлер для тепла (и у вас есть один термостат) или система на основе Apollo ( горячая вода с подогревом в водонагревателе) с сплит-системой ……. вызовите профессионала.

Эти системы могут быть очень сложными и могут потребовать специальных вспомогательных оснований, чтобы схема управления термостатом работала должным образом.Кроме того, для тепловых насосов существуют различные элементы управления, и провода для этих элементов управления идут в термостат, это разноцветные провода термостата. Эти элементы управления могут быть очень сложными. Наконец, каждый провод должен идти к правильной клемме на термостате, иначе устройство не будет работать правильно.

Вопросы, на которые необходимо ответить перед заменой термостата
  1. Что означают цвета проводов термостата? (См. Справочную информацию на нашей цветной странице проводки термостата)
  2. Сколько проводов мне нужно для термостата? Это зависит от типа вашей системы HVAC.Обычно для теплового насоса требуется больше проводов, чем для любой другой системы HVAC.
  3. Как подключить термостат? Смотрите наши подробные инструкции ниже.
  4. Что означает старая проводка термостата? Это провода, которые вы будете использовать для подключения нового термостата. Сделайте снимок на свой смартфон, пока они все еще подключены к старому термостату. Это поможет с подключением нового термостата.
  5. Какие провода для обогрева на термостате? Какие провода для охлаждения на термостате? Подробные пояснения к проводке см. В нашей таблице цветов проводки термостата или на странице.
Варианты установки термостата

Существует так много различных вариантов этой высокоэффективной системы отопления, вентиляции и кондиционирования воздуха, не буду пытаться описывать их здесь. Мы опишем общий тип (по крайней мере, для этого региона (средняя Атлантика), и если вы увидите, что у вас есть описанная система, вы можете действовать осторожно, на свой страх и риск. Кроме того, вот список возможных комбинаций проводки термостата, начинающийся с наиболее распространенный первый:

Это наиболее распространенный вариант, охватывающий многие центральные кондиционеры с кондиционерами воздуха или газовыми печами.Наконец, 5 проводов, вероятно, покрывают красный для 24-вольтового горячего, белый для тепла, желтый для охлаждения, зеленый для вентилятора и синий для общего (общий может быть другого цвета).

Обычно это термостат с батарейным питанием или цифровой термостат, работающий только на нагрев. Он охватывает те же элементы управления или цвета, что и описанная выше 5-проводная проводка термостата, за исключением только нагрева. Кроме того, только с обогревом, у вас, вероятно, будет 24-вольтовый горячий и общий (красный и синий), белый провод для тепла и зеленый провод для вентилятора.

Обычно используется для цифрового термостата, который управляет котлом. Наконец, у него есть 24-вольтовый горячий и 24-вольтный общий провод, а также провод для тепла, который, вероятно, белый.

Это, скорее всего, термостат только для нагрева, цифровой или нецифровой. Если он цифровой, он питается от батареи для питания термостата. Два провода, вероятно, красные для горячего 24 В и белые для тепла.

Если у вас более пяти проводов, у вас больше контрольных точек или у вас есть тепловой насос.Обратитесь к нашим страницам, посвященным проводке теплового насоса, чтобы узнать, как подключить термостат теплового насоса, или к нашей цветной странице проводки термостата, чтобы увидеть дополнительные точки управления для вашего термостата.

Таблица цветовых кодов проводки термостата (открывается в новом окне)
Кроме того, имейте в виду, что термостаты оснащены устройствами предупреждения нагрева и охлаждения. Предохранители охлаждения не регулируются, если упреждающие элементы тепла регулируются с помощью механических термостатов. Для вашей отопительной системы очень важна установка средства предупреждения перегрева.И для правильной работы термостата (только если у вас механический нецифровой термостат).

Устанавливается в соответствии с потреблением тока в управляющем контуре отопления. Кроме того, убедитесь, что датчик перегрева настроен правильно. Устанавливается в термостате или термостатах. Правильные настройки гарантируют, что вы получите максимальную отдачу от вашей отопительной системы и ваших термостатов.

Как подключить термостат — выбор правильного Tstat

Раздельная или пакетная система переменного тока с газовым, масляным или электрическим нагревом

Honeywell TouchScreen Thermostat

Первое, что вы должны сделать перед заменой термостата, — это выбрать правильный термостат для вашей системы.Выбор подходящего термостата.
Если вы на пенсии или кто-то находится дома в течение дня, вам, скорее всего, не понадобится программируемый термостат. В этом случае единственная выгода, которую вы получите от программируемого термостата или термостатов, — это ночь. Или я предпочитаю говорить утром, потому что вы можете настроить его так, чтобы устройство включалось непосредственно перед тем, как вы проснетесь.

Таким образом, когда вы встаете с постели, в доме будет комфортная температура. Я подробно опишу преимущества программируемого термостата в другом разделе ниже.Наконец, после того, как вы сделали выбор термостата, вы можете переходить к следующему шагу.

Перед тем, как вы начнете замену старого термостата

Справочная страница, которая поможет вам выбрать правильный термостат (открывается в новом окне)

Термостаты Honeywell, доступные здесь

Подключение и установка термостата Рекомендации ……… .Если вы решите устанавливаете собственный термостат, вы делаете это на свой страх и риск. Есть много случаев, когда домовладелец устанавливал свой собственный термостат и добивался успеха.Также во многих случаях домовладелец не смог установить новый термостат. Люди, которые потерпели неудачу, зря потратили часть своего дня, испортили один или два термостата и вызвали неисправность неотъемлемой части своей системы.

Я уже не говорю о том факте, что они в конечном итоге вызвали профессионального специалиста по HVAC для решения проблем. Проблемы, вызванные неправильной установкой термостата. Неудачники в конечном итоге платят в три-четыре раза больше, чем они заплатили бы, если бы первым был вызван профессионал.Наконец, учтите это при своем решении и, если есть сомнения, обратитесь к профессионалу. Вызовите специалиста для установки и подключения нового термостата.

Перед тем, как приступить к установке нового термостата, выключите питание. Как для конденсаторного агрегата, так и для воздухообрабатывающего агрегата / печи / котла.

Инструменты и шаги для установки термостата

.

Добавить комментарий