Трехфазный провод как подключить: 4 контакта, схема, по цветам

By alexxlab No comments

Содержание

Трехжильный кабель. Подключение | Полезные статьи

В данной статье рассмотрим, как осуществить замену двухпроводной проводки на трехпроводную с системой защитного заземления.

При организации бытовых систем электроснабжения процедура по устройству заземления является обязательным мероприятием. Это наиболее простой способ избежать поражения током при повреждении изоляции проводов и/или возникновения в сети коротких замыканий. Заземление также способно обеспечить защитой от выхода из строя различной бытовой электротехники.

К сожалению, во множестве старых (и не только) домов и квартир заземление электропроводки отсутствует, вместо него используется зануление, или защита отсутствует вовсе. Зануление, как показала практика, не самый надежный способ защиты, т. к. эта система, по сути, защищает лишь оборудование при возникновении коротких замыканий. При повреждении изоляции и утечки тока на корпус электротехнического устройства система зануления не сможет уберечь человека от поражения током (если тот случайно коснется оголенной части корпуса).

Кратко о бытовых системах заземления

Начиная с 2003 года в силу вступило постановление, в котором приведены обновленные требования к строительству и переоборудованию многоквартирных домов (и других строений), в том числе к устройству систем заземления. По правилам, здания должны оснащаться стояком, состоящим из 5 проводов, где 5-й служит в качестве заземляющего проводника.

Касательно частных домов. Системы заземления (при отсутствии) должны устраиваться жильцами самостоятельно. Обычно такая система представляет собой заземляющий контур, вкопанный в грунт. Контур, как вариант, выполняется из 3–4 стальных кольев, вбивающихся в землю и объединяющихся в единую цепь.

Для организации системы заземления в доме/квартире используются трехжильный кабель, подключение которого выполнятся по несложной схеме. Рассмотрим этот вопрос детальнее.

Основные моменты монтажа системы заземления

Весь процесс по монтажу системы заземления можно условно разбить на следующие части:

1.     Монтаж проводки/демонтаж и последующая замена двухжильного кабеля на трехжильный проводник (в непереоборудованных домах/квартирах).
Если выполняется замена электропроводки, в этот пункт также добавляются процедуры по демонтажу и последующей установке новых электроприборов (выключатели, розетки, выходы для подключения светильников и др.), имеющих специальные выводы для подключения заземляющей жилы. На рисунке показан пример розетки в разобранном виде с заземляющим контактом (центральная контактная площадка).

2.    Соединение трехжильного кабеля с электроприборами.
Технически трехжильный кабель подключить к розетке предельно просто. Все, что требуется проделать, это соединить каждую жилу провода с выходом на электроприборе. Однако здесь следует иметь в виду, что каждая жила должна подключаться к соответствующему по функционалу выводу розетки, т. е. к земле, нулю и фазе.
Понять «роль» жилы в кабеле несложно. Для этого достаточно изучить спецификацию проводника, предоставляемую производителем. Каждая жила имеет свою уникальную цветовую маркировку, обозначающую ее принадлежность к фазному, нулевому или заземляющему проводнику.

3.    Соединение трехжильного кабеля в распределительной коробке
Распределительная коробка служит для объединения группы кабелей в единую цепь. Различают центральную и локальную коробки. Центральная устанавливается на входе в дом/квартиру сразу после щитка. Локальные коробки служат для объединения проводки конкретного участка системы электроснабжения.
В случае, например, с комнатой в коробке объединяются провода, идущие от всех комнатных выключателей, розеток и других электроприборов. К каждой коробке по отдельности подводится фаза, ноль и земля. Таких распределительных точек в системе электроснабжения может быть несколько, и каждая из них затем объединяется с центральной коробкой.

4.    После чего остается трехжильный кабель подключить к распределительному щитку
При подключении кабеля к щитку снова может встать вопрос о том, какую жилу и к какому контакту ее следует подключать. На самом деле, здесь все просто. На поверхности щитового оборудования можно найти такие обозначения, как «L1», «L2», «L3»… (фазные выходы), «N» (рабочий ноль) и «PE» (защитное заземление). Отсюда несложно догадаться, какую жилу и куда следует подключить.

Здесь стоит иметь в виду, что заземляющей шины как таковой может не оказаться — скорее всего это означает необходимость подключения земли напрямую к металлическому корпусу щитка (в этом случае лучше обратиться к специалисту).

Трехжильный кабель: подключение и удлинение

Рассмотрим еще один момент, связанный с устройством систем заземления, а именно — правила соединения токопроводящих жил друг с другом. Возникает такая необходимость при удлинении трехжильных кабелей и/или их монтаже в распределительных коробках.

Существует несколько безопасных и надежных способов соединения жил. Сюда относятся:

•    Опрессовка. В этом случае жилы помещаются в металлическую гильзу, которая затем обжимается специальным инструментом — пресс-клещами. Поверх гильзы устраивается изоляция.
•    Сварка. Производится при помощи маломощных специальных сварочных аппаратов.
•    Пайка. Технология соединения такая же, как и при пайке, например, радиодеталей.
•    Соединение винтовыми клеммами. Простой и быстрый способ. Такие зажимы имеют в своей конструкции несколько контактных площадок с разъемами для подключения жил. Сами жилы фиксируются болтовым соединением.
•    Соединение самозажимными зажимами. Еще более простой способ. В отличие от устройств предыдущего типа здесь отсутствуют болты. Соединение жил производится путем их фиксации при помощи пружинных контактов.

Не рекомендуется производить удлинение трехжильных кабелей и/или соединение токопроводящих жил методом скрутки и последующей изоляции изолентой. Так соединять провода можно лишь на короткое время.

Схема подключения трехфазной розетки ССИ-125

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

В статье про подключение современных электрических плит я говорил, что обычные бытовые розетки на 16 (А) для этого не подойдут.

Нужны силовые однофазные или трехфазные розетки, в зависимости от модели плиты и электроснабжения Вашего дома.

И сегодня я хотел бы остановиться более подробно на силовой трехфазной розетке ССИ-125 от IEK.

Вот ее внешний вид .

Для начала расшифруем аббревиатуру ССИ-125:

  • C — силовой
  • С — соединитель
  • И — ИЭКовский
  • 1 — розетка стационарная открытой установки
  • 2 — номинальный ток 32 (А)
  • 5 — количество полюсов 3P + N + PE

А вот ее остальные технические характеристики:

  • рабочее напряжение 380 (В)
  • положение заземляющего контакта (ключ) на 6 (ч)
  • степень защиты IP44
  • температура эксплуатации -25°С до +40°С

Расположение контактов.

Габаритные размеры: 153(L)x105(H)x70(D) (мм).

Установка трехфазной розетки ССИ-125 выполняется открыто с помощью 4 крепежных отверстий.

Такие же трехфазные розетки мы устанавливали в помещении шиномонтажа для подключения компрессора, итальянского шиномонтажного и балансировочного станков на 380 (В).

Только трехфазные розетки были не на 32 (А), а на 16 (А) — ССИ-115. Она тоже является 5-контактной (5-полюсной). Для этих трехфазных розеток мы использовали силовые переносные вилки ССИ-015 с номинальным током на 16 (А).

Трехфазные розетки и вилки можно использовать при подключении любой трехфазной нагрузки  — это могут быть различные станки, промышленные вентиляторы, электрические калориферы, тепловые электрические пушки, электрические печи и плиты, бетономешалки, насосы и многое другое. В нашем примере у розетки ССИ-125 ток нагрузки  ограничивается до 32 (А), а вообще в ассортименте имеются трехфазные розетки, и на 63 (А), и даже на 125 (А), например, ССИ-135 и ССИ-145, соответственно.

Несколько слов про достоинства ССИ.

Корпус розетки сделан из термостойкого и самозатухающего материала. Крышка защищает от всевозможных загрязнений, запылений и попадания влаги. Поэтому степень защиты у нее определена, как IP44.

Для ввода питающего кабеля имеется специальный пластиковый манжет, в котором необходимо вырезать или просверлить отверстие под необходимый диаметр кабеля. Манжет выполнен из пластика, а для лучшего уплотнения желательно бы использовать резиновые уплотнения.

Чтобы добраться до клеммника, нужно открутить шурупы с каждой стороны корпуса. Кстати, все крепежные шурупы и соединительные винты в данной розетке покрыты никелем для защиты от воздействия коррозии.

Вот мы добрались и до клемм. Все токоведущие части розетки выполнены из латуни.

Клеммы отделены от внешней окружающей среды резиновым (эластомерным) сальником.

На силовой вилке имеется пластиковый держатель (шип).

Когда вилка вставлена в розетку, т.е. когда разъем находится в сборе, то этот держатель фиксирует крышку, тем самым защищая разъем от случайного и несанкционированного разъединения.

Подключение вилки в розетку происходит только в одном пространственном положении, которое и определяется с помощью ключа (6ч) и положения заземляющего контакта РЕ.

Недостатки.

Недостаток, который сразу бросается в глаза — это способ соединения жил подключаемого кабеля к самой розетке. Соединение выполняется с помощью одного прижимного винта (кроме клеммы РЕ — у нее два винта).

Это соединение крайне не надежное — маленькая площадь контакта, а также при сильном затягивании винта можно сделать насечку на жиле и со временем она может обломиться.

Вот пример, правда с алюминиевыми проводами.

Я считаю, что при токе 32 (А) должно быть более надежное соединение, например, прижимная пластина, как в автоматах, а еще лучше винтовое соединение, как в однофазной розетке В32-001 на 32 (А) — оно мне больше внушает доверие, особенно если под зажим вставить не просто зачищенную жилу, а сделать окольцевание.

Если подключать многопроволочные жилы, то без изолированных НШКИ или втулочных НШВИ наконечников в данном случае не обойтись. Вот статья, где я рассказываю о том, как делать опрессовку с помощью пресс-клещей EGI-60.

 

Схема подключения трехфазной розетки

У розетки ССИ-125 имеется 5 клемм с обозначениями: L1, L2, L3, N и PE. Так что перепутать здесь что-либо при подключении очень затруднительно.

К клеммам L1, L2, L3 подключаются фазные проводники соответствующих фаз — А, В и С, к клемме N — рабочий нулевой проводник N, а к клемме РЕ — защитный проводник РЕ.

При подключении жил кабелей и проводов прошу Вас соблюдать цветовую маркировку проводов.

Вот, например, медный кабель ВВГ (5х2,5).

В качестве фазных проводников берем белую (L1), черную (L2) и розовую (L3) жилы, в качестве нуля — синюю (N), а в качестве РЕ — желто-зеленую (PE).

Зачистим изоляцию жил кабеля. Для этого я пользуюсь уже полюбившимися мне клещами Книпекс 12 40 200.

Подключаем жилы кабеля к соответствующим клеммам розетки. Как я говорил выше, клемма РЕ имеет два прижимных винта, в связи с этим жилу РЕ нужно зачищать чуть большей длины, чем фазные.

Вот что получилось.

Если с помощью трехфазной розетки Вам необходимо соединить электродвигатель, то фазы А, В и С нужно подключить к клеммам L1, L2, L3 соответственно, а к РЕ — защитный проводник РЕ (заземление). Клемма N в таком случае останется свободной — не подключенной.

P.S. По своему опыту скажу, что рассмотренные силовые розетки и вилки достаточно удобные в эксплуатации. Вот если бы доработать способ соединения жил, то к удобству я добавил бы еще практичность и надежность. Спасибо за внимание.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


схема три фазы в одну

Большинство однофазных электроприборов подключаются к сети 220В, но к многоквартирным домам, гаражным кооперативам и дачным посёлкам подводится трехфазное напряжение 380В. Для питания бытовых потребителей такое напряжение не годиться, поэтому при монтаже электропроводки возникает вопрос — как из 380 сделать 220 Вольт.

В чем отличие трехфазного напряжения от однофазного

Питание всех бытовых потребителей осуществляется по четырём проводам от трёхфазной сети — три фазных (линейных) L1, L2 и L3 и один нейтральный (нулевой) проводник N, а в квартиры подводится однофазное напряжение, для которого необходимы только два проводника — нулевой и фазный.

Переменное напряжение в разных фазах сдвинуто относительно друг друга на 120° для получения вращающегося магнитного поля в электродвигателях и уменьшения тока в нейтральном проводе.

Кроме количества проводников у трёхфазной сети имеются и другие особенности:

  • Напряжение в сети. В однофазной схеме есть только одна величина напряжения — между фазой L и нейтралью N, а в трёхфазной сети имеется два напряжения, отличающиеся по своему значению. Это фазное L-N, равное 220 Вольт, и линейное, между любыми двумя фазными проводами L1-L2, L2-L3 или L1-L3, равное 380 Вольт. Поэтому один из способов, как из 380 сделать 220 Вольт, это просто подключить электроприбор к нулю и фазе.
  • Различное сечение проводов. В однофазной электропроводке все провода имеют одинаковое сечение и рассчитываются на полный ток потребителя, а в трёхфазной сети по нейтральному проводнику протекает только уравнительный ток. Из-за этого нейтральная жила имеет меньшее сечение по сравнению с фазными, но при этом нагрузку по фазам необходимо распределять максимально равномерно.
  • Разное количество полюсов у автоматических выключателей. В однофазной сети достаточно отключать только фазный проводник, поэтому допускается установка однополюсного автомата (кроме вводного). В трёхфазной нужно отключать все фазы одновременно, из-за чего необходима установка трёхполюсного выключателя.

Схемы подключения «звезда» и «треугольник» в трехфазной сети

Передавать электроэнергию выгоднее по высоковольтным ЛЭП, поэтому питание всех жилых районов и большинства промышленных предприятий осуществляется через понижающие трансформаторы, начала вторичных обмоток, которых соединены между собой, а концам обмоток подключаются отходящие фазные провода.

Точка соединения катушек заземляется и к ней подключается нейтральный проводник. Такая схема электроснабжения называется TN и описана в ПУЭ гл.1.7.

Существует две схемы подключения электроприборов к такой сети, отличающихся подаваемым напряжением.

Самая распространенная схема соединения это «звезда». Используется при включении электроприборов, напряжение питания которых составляет 220В. При этом один из проводов каждого из аппаратов присоединяется к одной из фаз, а оставшиеся соединяются вместе и подключаются к нейтрали.

При этом мощность аппаратов может быть различной, что вызовет появление в нейтральном проводнике уравнительного тока, но напряжение на каждом из электроприборов будет постоянным (за исключением потерь в питающих кабелях).

При соединении в «звезду» трёх одинаковых электроприборов ток в нейтральном проводе отсутствует, поэтому его допускается не подключать, но при поломке одного из аппарата напряжение питания каждого из оставшихся составит 190 Вольт.

Поэтому звезда без нейтрали используется, в основном, при подключении трёхфазного электродвигателя.

Менее распространённой является схема соединения «треугольник». При этом каждый из электроприборов подключается к двум из трёх линейных проводников. Напряжение питания всех электроприборов составит 380В.

Такая схема используется в электроустановках, в которых отсутствует возможность подключения нейтрали или заземления, например, в подвижных аппаратах, питание которых осуществляется не кабелями, а при помощи токосъёмных пластин.

Плюсы и минусы трехфазной и однофазной сети

Использование для питания частного дома трёхфазного напряжения 380 В имеет ряд отличий от однофазного 220 В, поэтому при принятии решения о подключении к такой сети следует изучить все достоинства и недостатки такой схемы электроснабжения.

У трёхфазной сети есть ряд преимуществ перед однофазной:

  • Меньшее сечение подходящего кабеля. При равномерном распределении нагрузки по фазам имеется возможность повышения общей мощности электроприборов.
  • Подключение трёхфазных электродвигателей без дополнительных устройств и потери мощности. Обычные асинхронные электродвигатели при включении в однофазную сеть теряют значительную часть момента или необходимо приобрести специальный преобразователь.
  • Дополнительные возможности модернизации и ремонта электропроводки. Зная, как из 380 получается 220, можно изменять подключение электроприборов в зависимости от конкретной ситуации.

Кроме того, в некоторых случаях подвод к зданию трёхфазного питания позволяет получить в электрокомпании разрешение на повышение потребляемой мощности.

Кроме достоинств трёхфазная схема электроснабжения имеет и недостатки:

  • необходимо получить разрешение на изменение схемы в электрокомпании;
  • дополнительные затраты на замену питающего кабеля;
  • увеличенные размеры и стоимость аппаратуры во вводном щитке.

Где взять 220 Вольт, если в щите три фазы

Чаще всего вопрос, как из 380 сделать 220 Вольт, задают жители многоквартирных домов. В этих зданиях в подъезде на каждом этаже установлен электрощиток, к которому подходит три фазы, нейтраль, а в некоторых случаях ещё и заземление.

В таком электрощите имеется два напряжения — линейное 380В, между двумя разными фазами, и фазное 220В, между любой из фаз и нейтралью.

Фактически, для получения однофазного напряжения в трёхфазном щите необходимо двухжильный кабель присоединить к одной из фаз и нейтральной шиной. При наличии в схеме заземления желательно использовать не двухжильный, а трёхжильный кабель и подключить его следующим образом, согласно правилам цветовой маркировки кабелей:

  • коричневая жила — фаза;
  • синяя или голубая — нейтраль;
  • жёлто-зелёная — заземление.


Важно! Для уменьшения тока в подходящем к зданию кабеле подключение разных квартир необходимо производить равномерно по всем трём фазам.

Схема как из 380 сделать 220 Вольт

Существует несколько вариантов, как из 380 сделать 220 Вольт. Схемы таких соединений должны быть известны любому опытному электромонтёру:

  • Подключить однофазную нагрузку к фазному и нулевому проводам. Нейтральный проводник обычно имеет меньшее сечение, или для их поиска в четырёхжильном кабеле можно использовать мультиметр. Напряжение между фазными проводами составит 380В, а между фазой и нулём 220В.
  • Использовать трансформатор 380/220. Мощность этого устройства должна быть равна или больше мощности подключаемого электроприбора. Достоинство этой схемы в меньшей опасности поражения электрическим током. Вместо обычного трансформатора можно взять автотрансформатор. Этот прибор имеет меньшие габариты, но не защищает от поражения электрическим током.

Куда подключать заземление

Кроме нейтрали и фазы в современной электропроводке используется ещё один проводник — защитное заземление. К нему присоединяются корпуса электроприборов и светильников.

При нарушении изоляции между этими деталями и элементами, находящимися под напряжением, возникает короткое замыкание или появляется ток утечки. В результате этого явления происходит отключение автоматического выключателя или дифференциальной защиты, соответственно.

В современной системе электроснабжения жилых домов используются три схемы заземления:

  • TN-C. Старая система заземления, при которой заземление линий электропередач осуществляется только в подстанции, на нейтрали вторичной обмотки трансформатора, после чего к потребителю подводится совмещённый проводник PEN, выполняющий одновременно функцию заземления и нейтрали. В этом случае вместо защитного заземления имеет место защитное зануление и подключать к нему корпуса электроприборов запрещено ПУЭ 1.7.132. Для защиты людей от поражения электрическим током в такой системе необходимо использовать УЗО или дифавтомат.
  • TN-C-S. Это более современная система, при которой во вводном щитке совмещённый провод PEN разделяется на нейтраль N и заземление РЕ. Место разделения при этом подключается к контуру заземления здания. Согласно ПУЭ п.1.7.135 после разделения соединение этих проводников запрещено. Заземляющий провод в квартирной электропроводке в данной системе необходимо присоединять именно к проводнику РЕ.
  • TN-S. Самая современная схема, при которой электроснабжение осуществляется при помощи пяти проводов — три фазных L1, L2 и L3 , нейтраль N и заземление РЕ. В этом случае заземление присоединяется только к заземляющему проводнику.

В крайнем случае, допускается подключать защитное заземление к отдельному контуру, изготовленному согласно нормам ПУЭ п.п.1.7.100-118. В этом случае получится система заземления ТТ.


Важно! Использовать в качестве заземлителя водопроводные, канализационные или отопительные трубы запрещено.

Вывод

В обычной электропроводке есть только два варианта, где взять 220 Вольт. Это подключить линию к фазному и нейтральному проводникам, кроме заземления, или использовать понижающий трансформатор. Последний метод применим не только в сети 380В, но и при любом другом напряжении.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Подключение участка или дома к электрической сети

Что потребуется? Какой материал?

Итак, Вы купили долгожданный участок земли и хотите его подключить к электрической сети или у Вас уже существующий дом и Вы по какой-то причине хотите пере-подключить его (поменять счетчик или щиток). 

Электрическая линия ведется проводом СИП по опорам СВ-95, либо СВ-105.  Около Вашего участка размещается одна из них, с которой Вы и будете брать питание.

Какой материал потребуется, чтоб установить щиток на опоре?

Итак, Вам потребуется провод сип-4 2х16 — 220В (две жилы) или сип-4 4х16 — 380В (четыре жилы). Длина опоры 9,5 метра (1,5м в земле и 8м над землей). Щит располагается на  высоте 1,5 метра от земли. Прибавив по 1,5м на верх опоры и на низ, чтобы завести в щиток, получаем необходимое количество провода 9,5м (округляем до 10м).

Чтобы подключить сип на опоре к питанию потребуются прокалывающие зажимы ZP645 или ZP10 (220В — 2 шт, 380В — 4 шт). 

Закрепить сип на опоре можно несколькими способами. Мы расскажем о двух.

Первый способ — с помощью хомутов.

Вам потребуется зажим натяжной РА 25-ТЕ или DN123  — 1 шт для того, чтобы закрепить провод на опоре. Если питание проходит через Вашу опору, то сверху на ней уже установлен кронштейн анкерный СА 1500, закрепленный лентой F20.07 . Соответственно, крепите натяжной зажим на опоре и закрепляете свой провод. Для защиты от погодных условий вниз провод сип-4 2х16 можно прокладывать в трубе гофрированной ПНД 25, а сип-4 4х16 в ПНД 32.

Опускаете провод в трубе пнд либо нет, крепите к опоре с помощью хомутов 500х7,6 

Второй способ — с помощью зажимов.

Потребуются зажим натяжной РА 25-ТЕ или DN123 — 2шт. Первый крепиться на опоре, второй внизу на щитке. Провод натягивается и крепится зажимами. Будет висеть натянутый как струна)

Теперь переходим к выбору щитка

Для однофазного подключения 220В потребуется  Щит ЩРН-М 370х325х180мм IP54 (если внутри помещения, то подойдет Щит ЩРН-М 370х325х180мм IP31). 

 Для трехфазного подключения 380В потребуется Щит ЩРН-М 500х400х220мм IP54. 

Щит крепится на опору на высоте 1,5 метра от земли. Для монтажа потребуются два куска ленты крепления F20.07 по 1 метру и несколько саморезов по металлу со сверлом (Саморез по металлу 4,2х13 сверлоконечный). Делаете из ленты полукруг вокруг опоры и прикручиваете ее к щитку.

Комплектация щитка.

Однофазное подключение 220В.  

Счетчик Нева 106, Меркурий 201.5 (механическое табло), Меркурий 201.2 (ЖКИ табло) — 1 шт. Вводной автомат на 25А-32А двухполюсный (32А 2п ВА47-29 IEK) — 1шт и автоматы на ответвление 16А-25А в зависимости от потребителей (1п 16А ВА47-29 IEK) — 5шт. Розетка на DYN-рейку — 1шт , шина нулевая — 2шт.

Трехфазное подключение 380В.

Теперь можно составить список заказа

Однофазное подключение

провод СИП-4 2х16 -10м

Зажим ответвительный ZP10 — 2шт

Зажим анкерный РА 25-ТЕ — 2шт

лента F20.07 — 3м

Кронштейн СА25 1шт

саморез по металлу 10шт

счетчик однофазный — 1шт

щит уличный ЩРН -1шт

DYN-рейка 60см 1шт

Выкл. авт. 2п 25А 1шт

Выкл. авт. 1р 16А 3шт

Выкл. авт. 1р 25А 2шт

Розетка на DYN 1шт

Шина нулевая 2шт

Это список материала на однофазное подключение

Трехфазное подключение

провод СИП-4 4х16 -10м

Зажим ответвительный ZP10 — 4шт

Зажим анкерный РА 25-ТЕ — 2шт

Кронштейн СА25 1шт

лента F20. 07 — 3м

саморез по металлу 10шт

счетчик трехфазный — 1шт

щит уличный ЩРН -1шт

DYN-рейка 100см 1шт

Выкл. авт. 3п 32А 1шт

Выкл. авт. 3п 25А 1шт

Выкл. авт. 1р 16А 3шт

Выкл. авт. 1р 25А 2шт

Розетка на DYN 1шт

Шина нулевая 2шт

Это список материала на трехфазное подключение

Розетка 380 Вольт – виды, характеристики, схема и подключение

Электрические розетки на 380 вольт применяются на предприятиях и в строительстве, а также в частных домах, на дачах или в автогаражах, чтобы подключать сварочные аппараты, двигатели, компрессоры и оборудование, требующее трехфазное напряжение. В большинстве случаев, трехфазные розетки применяются для подачи напряжения к мощному электрооборудованию. В квартирах такие розетки встречаются редко, но современные изготовители стремятся производить мощную технику для дома. Одно условие – в помещении должна присутствовать трехфазная проводка.

Основные принципы подключения

Присоединение трехфазной розетки заключается в подключении 4 (без заземляющего проводника) или 5 жил, три из которых будут фазными, четвертый – нулевым, а пятый (если он есть) – земля. Во время покупки розетки нужно представлять, подойдет ли к ней имеющаяся на приборе вилка. Если нет, то лучше купить и штепсель (на оборудовании можно будет его поменять).

Перед началом работ индикатором напряжения необходимо определить, где находятся фазы, ноль и земля на подводящем кабеле. Важно не перепутать, так как подключение фазы на клемму нуля или заземления повлечет поломку оборудования и поражение человека электрическим током. Затем отключить напряжение питания, убедиться в его отсутствии при помощи тестера.

После того, как все работы будут проведены, следует включить автомат питания, удостовериться в отсутствии фазы на корпусе, замерить напряжение между фазами – оно должно составлять 380 В. Розетка подключена правильно, если все условия соблюдены.

Типы трехфазных разъемов

Розетки 380 вольт бывают: четырехконтактные — PC 32 и пятиконтактные — 3P+PE+N. Отличаются схемой подключения и количеством гнезд под вилку. Схема розетки 380 вольт 4 контакта такая же, как и у пятиконтактной, единственно, заземление присоединяется не в разъеме, а непосредственно на корпус электрооборудования, в связи с этим она применяется только для стационарной техники. Пятиконтактные — применяются для перемещаемых установок, и к ним подключается вилка, соединенная гибким медным проводом.

Существуют еще импортные розетки, но они дороже отечественных. Их применение обусловлено требованиями дизайна, либо наличием у прибора соответствующей вилки.

Еще один важный момент различия розеток – определенный ток, на который они рассчитаны. Нужно, чтобы это значение превышало максимальный ток подключаемого электрооборудования.

Так же розетки контактов 32а делятся по способу установки на внутренние и наружные. Внутреннего исполнения пользуются большим спросом, так как удобны в эксплуатации, но для их монтажа требуются дополнительные трудозатраты, а именно: высверливание отверстия в стене для подрозетника, его закрепление с помощью алебастра и монтирование розетки в установочную коробку.

Розетка 3P+PE+N

Если требуется подключить передвижное электрооборудование, к примеру – сварочный инвертор, компрессор, станок, рекомендуется использовать розетку 380 вольт 5 контактов 3P+PE+N. Обычно это бывает нужно в мастерских, автогаражах и на стройках. Как подключить это устройство?

Для начала нужно разобрать розетку, чтобы добраться до винтовых зажимов. В данном случае их будет пять. Согласно схеме подключения розетки 380 вольт, на клеммы, маркированные как L1, L2, L3, присоединить по одной из трех фаз в свободном порядке. Последовательность фаз оказывает влияние только на то, как будет вращаться двигатель — по часовой стрелке или против. Если потом окажется, что ротор крутится не в том направлении, в каком требуется, можно будет поменять местами какие-либо две фазы на выключателе, или на пускателе. На клемму с надписью N присоединяется ноль. Следует обратить внимание, что на вилке зеркально тоже находится контакт ноль, необходимо их совместить. На контакт, обозначенный PE или значком заземления, подключается проводник, подсоединенный к защитному заземляющему контуру. Гнездо PE располагается возле направляющего углубления, которое не позволяет воткнуть вилку в розетку ошибочно.

Розетка PC32a

Когда требуется подключить к электричеству стационарное оборудование (находящееся всегда на одном месте), например, электроплиту, подойдет розетка 380 вольт 32а. На три клеммы розетки L1, L2, L3 – садятся три фазы, на N – рабочий ноль. Встречаются модификации с четырьмя контактами, но это не означает, что защитное заземление не требуется, просто оно подключается непосредственно на металлическую деталь корпуса электроприбора. По правилам электробезопасности, на стационарное оборудование подключается неразрывное заземление, минуя розетку и шнур, сделанный из медного многожильного кабеля без изоляции (для визуальной оценки его целостности). Толщина этого шнура должна быть не тоньше диаметра жилы питающего провода.

Устаревший способ подключения

В прошлом можно было подключать провода фазы и нуля к клеммам розетки в произвольном порядке, и это не оказывало на производительность электрооборудования, произведенного по системе TN-C, негативного воздействия. Единственное, ремонтникам это доставляло неудобство при поиске неисправности. Сегодня выпускается электрооборудование, чувствительное к неправильному подключению фаз и нуля, поэтому важно не ошибиться при подключении, иначе может возникнуть неисправность и аварийное положение.

В советское время применялась четырехжильная проводка, включающая три фазы и ноль. Подключались трехфазные розетки стационарного типа, которые маркировались значками фаз и нуля (ноль подписывали значком заземления) с прямой и обратной стороны. Такие же обозначения были и на вилке. Эти четырехконтактные вилки и розетки до сих пор используются в работе, подключенные по типу TN-C, только с заземлением и с помощью пятижильного силового кабеля. Где три жилы будут – три фазы, четвертая – ноль, а пятая – заземление.

Современное подключение

Новая система заземления TN-S обязывает потребителей подключать электрооборудование силовым кабелем с пятью жилами, одна из которых будет заземлением (PE), а остальные четыре – как прежде: три фазы (L1, L2, L3) и ноль (N). Таким образом, появились розетки 380 вольт с пятью контактами, обозначенными в прежнем виде с обеих сторон корпуса разъема.

Винтовой способ крепления жил к розетке

Для того чтобы подключить жилы к разъему, нужно воспользоваться одним из вариантов крепления. Винтовой способ проверен временем и очень надежен. С обратной стороны розетки имеются винтовые зажимы, в которые вставляются концы кабеля и прикручиваются к контакту. Перед этим необходимо приготовить жилы. Зачистить их острым ножом, либо специальным инструментом для аккуратного снятия изоляции – стриппером. Надеть гильзовые наконечники и обжать их ручным инструментом – кримпером. Если под рукой нет обжимных клещей, можно воспользоваться паяльником и облудить скрученные провода. Таким образом, обработанные концы кабеля уже можно прикрутить к розетке.

Безвинтовой способ крепления

Это самое современное и удобное соединение, потому что оно экономит время электрика, сокращает трудозатраты и позволяет исправить ошибку при подключении.

Сначала зачищается кабель, если требуется. К сведению – производятся розетки, где изоляцию снимать не нужно, она пробивается специальным острым зажимом. Затем провод помещается в гнездо, согласно схеме розетки 380 вольт. Следующим этапом будет одновременное нажатие рычажка и проталкивание жилы под зажим, а затем нужно просто отпустить ручку для фиксации провода. Потом надо проверить прочность соединения, подергав кабель.

Есть модификация розеток, где вместо рычажков на каждом контакте имеются отверстия под плоскую отвертку. Тогда, помещая провод в гнездо, следует вставить в паз отвертку с плоским жалом, а затем поднять ручку инструмента вверх. В этот момент произойдет прорезание изоляции. Останется только вынуть отвертку и проверить прочность контакта подергиванием кабеля.

Схемы подключения

План подсоединений отличается у различных видов розеток 380 в. Характеристики и подключение тоже разнятся. Выше уже была рассмотрена схема пятиконтактной розетки, теперь предлагается подробнее рассмотреть подключение 4 контактов.

Виды старых образцов розеток вполне успешно можно использовать в современной системе пятижильной проводки с применением заземления TN-S. В этой схеме защита от тока утечки обеспечивается проводом заземления PE, который присоединен к центральной шине заземления PE. Этот проводник подключается прямо к электропроводящей части корпуса оборудования, а не к отсутствующему в данном случае заземляющему контакту розетки.

Естественно, что трехфазный прибор должен быть неподвижным, чтобы не переподключать заземление.

Проверка напряжения

Чтобы удостовериться в точности подключения розетки 380 вольт, рекомендуется применить мультиметр, включенный в режим измерения переменного напряжения и воспользоваться схемой.

Между фазами в свободной последовательности должно наблюдаться значение 380 в. Между нулем и каждой фазой в отдельности – 220 вольт, а также между заземлением (защитным нулем) и каждой фазой – тоже 220 вольт.

Только тогда, когда все значения совпадают, можно начать эксплуатировать розетку для питания электроустановок. В случае неисправности потребителей энергии, розетка выполнит функцию защиты от поражения электрическим током.

Есть еще один способ защиты от утечки тока – это специальное устройство под названием УЗО (устройство защитного отключения). Его подключают сразу после автомата питания, а за ним идет кабель к розетке. Он отключится, как только в цепи появится утечка и этим предотвратит поражение человека электрическим током.

Установкой дифференциального автомата можно заменить два устройства – автомат питания и УЗО, так как он выполняет функции этих элементов электроцепи. Обычно, когда с прежних времен в проводке присутствует только автоматический выключатель, специалисты заменяют его на дифференциальный автомат и все вопросы с защитой решены.

Проверка подключения вилки

Если с вопросом о том, как подключить розетку 380 вольт, все понятно, то как проверить подключение вилки в том случае, когда поменяли и ее. Следует опять воспользоваться мультиметром, но поставить его в режим измерения сопротивлений. Вилку пока не нужно включать в розетку.

Замеряется сопротивление обмоток электродвигателя через контакты вилки. Другими словами, измеряется сопротивление между нулем и каждым фазным контактом. Все три значения должны совпадать друг с другом, и быть равными какому-то конкретному числу, например R.

Далее производится замер последовательного сопротивления двух обмоток. Проще говоря, замеряется сопротивление между двумя фазными контактами в любой последовательности. Должно получиться три одинаковых значения, в два раза больших (чем в первом случае), то есть 2R.

Если все замеры соответствуют требованиям, то вилка подключена правильно и ее смело можно вставлять в розетку.

Вилка и розетка спроектированы таким образом, чтобы обеспечить нормальную работу по передаче номинального тока потребителя или размыкание цепи, но только после отключения автомата питания. Нельзя их использовать для прекращения подачи напряжения, в избегании возникновения электро дуги или искры. Для выключения электроустановки, сначала следует выключить автомат питания, а затем выдернуть вилку из розетки. Для включения – сначала воткнуть вилку в розетку, а затем включить автомат. Той же последовательности необходимо придерживаться даже в аварийной ситуации.

Трехфазная схема распределительного щита — 5 разных вариантов

Сегодня очень часто частные дома стали подключать к трехфазной электросети. Также в некоторых новых многоэтажках в квартиры начали заводить три фазы вместо одной как раньше. Как правило, при данном подключении местные сетевые компании выделяют на дом или на квартиру мощность 15кВт. Это означает, что номинал вводного автоматического выключателя должен быть 25А. Для небольших офисов, кафе и т.д. выделяют большую мощность. Поэтому в их щитах номиналы вводных автоматов будут совершенно другими. 

Подключение к 3-х фазной электросети обуславливает установку трехфазных электрощитов. Ниже разберем пять разных вариантов простых трехфазных схем для распределительного щита. 

Все схемы простые и носят рекомендательный характер. Они наглядно показывают суть самих подключений разных защитных устройств в одном щитке. К разработке схемы каждого щита нужно подходить индивидуально, так как у всех условия разные. Система заземления в представленных вариантах TN-S. 

Вариант 1. 

Здесь представлена самая простая трехфазная схема щита. На вводе обязательно должен стоять вводной автоматический выключатель. Он будет ограничивать потребляемый ток, каждого потребителя — дома или квартиры. Далее идет 3-х фазный прибор учета электроэнергии. 

На самом деле места размещения счетчиков могут быть разные. Они могут устанавливаться на улице в щите учета для частных домов, в этажных щитах в многоквартирных домах или непосредственно в домашних щитах. Где ставить счетчики указываю в технических условиях на подключение местные сетевые компании или это строго определяется проектной документацией зданий. 

Большинство бытовых потребителей подключаются к однофазной сети. Тут составляют исключения мощные варочные поверхности, проточные водонагреватели, электрокотлы и т. д. Такие потребители имеют возможность подключения к 3-х фазной сети. 

После прибора учета электроэнергии необходимо всю однофазную нагрузку равномерно распределить по фазам. Для этого нужно сосчитать мощность приборов, количество однополюсных автоматических выключателей и постараться их разделить на три равные части. 

В предложенном варианте трехфазной схемы щита для наглядного понимания на каждой фазе подключено по два. Рабочий ноль от счетчика подключается к общей нулевой шине, а нулевые защитные проводники подключаются к общей шине заземления. Фазы подключаются через групповые автоматы. Таким образом получается, что при отключении потребителя будет разрываться только один фазный проводник. Это стоит учитывать и следить, чтобы при подключении щита к сети на вводе не были перепутаны между собой фаза и ноль. С такими ошибками мне пару раз приходилось сталкиваться. Получалось, что ноль коммутировался автоматами, а фаза сидела на нулевой шине. При отключении автомата в розетки все равно оставалось опасное напряжение, что могло привести к плачевным последствиям. Будьте внимательны и осторожнее. 

Вариант 2. 

Данный вариант схемы по своей сути аналогичен с предыдущем вариантом. Тут только нет прибора учета электроэнергии и изображен 3-х полюсный автоматический выключатель для 3-х фазной нагрузки. Также тут изменено чередование однополюсных автоматов. То есть автоматы, подключенные к фазе «А» — это первый, третий и т.д. устройства. Чередование происходит через каждые два полюса. Тут так это показано для возможности использования 3-х фазной гребенчатой шины. Зубчики ее шины от одной фазы как раз имеют такое чередование. С ее помощью очень удобно соединять между собой несколько защитных устройств. Она исключает изготовления множества перемычек между ними. 

Вариант 3. 

Этот вариант схемы трехфазного электрощита уже больше отвечает современным нормам электробезопасности. В нем после счетчика стоит общее УЗО. В текущем примере показано устройство защитного отключение с током утечки на 30мА. Данная схема щита полностью защищает человека от поражения электрическим током. Но есть некоторые минусы у использования всего одного УЗО 30мА на вводе: 

1. При его срабатывании будут одновременно отключаться все потребители в доме. Если это произойдет в темное время суток и поиск места утечки займет много времени, то это будет не очень удобно. 

2. Есть возможность появления ложного срабатывания УЗО из-за естественных токов утечки, которые присутствуют в бытовых приборах. 
В данной схеме также устанавливается одна общая нулевая шина после УЗО и одна общая шина заземления. Здесь с подключением кабелей от розеток сложно запутаться. 

Вариант 4. 

Вот в данном варианте уже можно немного запутаться с подключением нулевых рабочих проводников, так как тут стоит несколько УЗО. А мы знаем, что у каждого УЗО должна быть своя индивидуальная нулевая шина, иначе ничего работать не будет. 

В текущей трехфазной схеме на вводе стоит уже противопожарное селективное УЗО на 300 мА. Оно будет защищать кабели от возгорания при замыкании фазы на землю. Для человека ток 300 мА уже опасен и поэтому для его защиты нужно ставить дополнительное УЗО на 10-30 мА. 

Ниже на рисунке показано одно УЗО с током утечки 30мА только на первой фазе, к которому подключено два автоматических выключателя. У этого УЗО будет своя нулевая шина и поэтому нулевые рабочие проводники от других групп к его шине подключать нельзя. А шина заземления всегда и для всех потребителей будет одной общей. 

В текущем варианте можно рассмотреть схему с установкой трех 2-х полюсных УЗО по одному на каждую фазу. Так все группы будут иметь защиту от утечек тока. Тогда здесь можно будет отказаться от общего вводного УЗО на 300мА, так как у вас и так все будет иметь защиту с уставкой 30мА. 

Вариант 5. 

В пятом варианте представлена схема трехфазного щита без вводного УЗО, но с использованием однофазных дифавтоматов на некоторые потребители. АВДТ ставится один на одну группу и поэтому их количество может быть равно количеству групп. Так все группы потребителей будут независимы друг от друга. То есть при возникновении утечки тока в одном приборе, отключится только дифавтомат, к которому он подключен. При использовании УЗО с 3-5 автоматами при срабатывании УЗО будет отключаться соответственно 3-5 групп. А это уже не очень удобно со стороны эксплуатации потребителей. 

Вышеприведенные схемы имеют наглядный вид, чтобы донести саму суть подключений разных защитных устройств в одну общую схему электрощита. Также эти примеры очень элементарные и поэтому ваши схемы будут намного больше и сложнее. 

звезда, треугольник, трехфазная сеть 380В, однофазная сеть 220В

Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?»

Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т.к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.

В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).

Например:

— зачем шесть контактов в двигателе?

— а почему контактов всего три?

— что такое «звезда» и «треугольник»?

— а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?

— а как измерить ток в обмотках?

— что такое пускатель?

и т.п.

Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.

Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока:

1. Однофазная сеть 220 В,

2. Трехфазная сеть 220 В (обычно используется на кораблях),

3. Трехфазная сеть 220В/380В,

4. Трехфазная сеть 380В/660В.

Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.

В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.

Как определить напряжение в вашей сети?

Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.

В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.

В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.

Возможные схемы подключения обмоток электродвигателей

Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.

Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы — C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая — C2 и C5, а третья — C3 и C6.

Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).

Подключение электродвигателя по схеме звезда

Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.


Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.

Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.

Подключение электродвигателя по схеме треугольник

Название этой схемы также идёт от графического изображения (см. правый рисунок):


Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.

То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).

Подключение электродвигателя к трёхфазной сети на 380 В

Последовательность действий такова:

1. Для начала выясняем, на какое напряжение рассчитана наша сеть.

2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):

Двигатель для однофазной сети 220В

(~ 1, 220В)

Двигатель для трехфазной сети

220В/380В (220/380, Δ / Y)

Двигатель для трехфазной сети 380В

(~ 3, Y, 380В)

Двигатель для трехфазной сети

(380В / 660В (Δ / Y, 380В / 660В)


3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.

4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.

Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).

Есть 2 способа подключения электродвигателя:

— использование автоматического выключателя или автомата защиты электродвигателя

Эти устройства при включении подают напряжение сразу на все 3 фазы. Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.

Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).

Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.

— использование пускателя

Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.

Привод механизма контактора осуществляется с помощью электромагнита (соленоида).

Устройство электромагнитного пускателя:

Магнитный пускатель устроен достаточно просто и состоит из следующих частей:

(1) Катушка электромагнита

(2) Пружина

(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)

(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).

При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).

Типовая схема подключения электродвигателя с использованием пускателя:

При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).

5. Проконтролировать, в правильную ли сторону крутится вал.

Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса

Как подключить поплавковый выключатель к трёхфазному насосу

Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.

Самый простой способ – использовать для автоматизации магнитный пускатель.

В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.

Подключение электродвигателя к однофазной сети 220 В

Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку

Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).

Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.

Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В.

Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.

Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.

Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).

Использование частотного преобразователя

В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.

Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).

Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:

— регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),

— при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),

— при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.

Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.

Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.

Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,

дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.

Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.

На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.

Данные насосы используются в качестве дозирующих насосов на пищевом производстве.


Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).


Технический директор

ООО «Насосы Ампика»

Моисеев Юрий.

Как подключить трехфазное электричество

Как
для подключения трехфазных розеток и защиты от перенапряжения

Розетки марки Cooper
Устройства защиты от перенапряжения марки Intermatic
Цветовые коды проводов в Википедии
3-фазная проводка
Форум электриков
Набор инструментов для инженеров
Оценка линейных напряжений
3-фазные электросчетчики
Схемы подключения 3-фазных двигателей
Формулы для 3 -фаза
Междуфазное напряжение = между фазами
нейтраль x √3
3-фазный имеет 2 разновидности: 3-проводной: три провода под напряжением и без нейтрали, и
4-проводная: три горячих провода и нейтраль

Типы фазовой проводки
Увеличенное изображение 277
480 Три
Фаза Звезда

480 В между фазами

277 В между фазами

Все соединения звездой обеспечивают два напряжения из-за соединения с общей точкой или нейтрали.

Линейное напряжение = 480 В
Линейное напряжение = 277 В
Напряжения выше или ниже в зависимости от обмоток внутри трансформатора.
Сила
генерируется на заводе при вращении 3-х катушек в магнитном поле =>
питание передается по 3 линиям => питание передается по проводам на местный
области => линии электропередач подключены к трансформатору => мощность
превращается в конкретное напряжение в зависимости от того, какой трансформатор
установлен, и как подключен трансформатор.Конфигурация
«звезда» или «треугольник» относится к способу подключения катушек трехфазного трансформатора.
Внутри
каждый трансформатор состоит из двух катушек: первичная катушка подключена к источнику питания
сторона поколения. Вторичная катушка подключена к служебным проводам, питающим
сервисная панель и автоматические выключатели.
Если вторичная обмотка намотана звездой, то питание на сервисный щиток всегда будет иметь нейтраль и два напряжения.
Читать
Увеличенное изображение 277
480 Три
Фаза WYE

480 В между фазами

277 В между фазами

Показывает заземление оборудования

Используйте сетевой фильтр AG4803CE
Увеличенное изображение Три
Фаза 480 В

480 В между фазами

Без заземления системы

Показывает заземление оборудования

Используйте сетевой фильтр AG4803D3
Три
Фаза 480 В, треугольник, угол, земля

480 В между фазами

Увеличенное изображение 120
208 В, 3 фазы, звезда

208 В между фазами

120 В между фазами

Увеличенное изображение 120 208 В, 3 фазы, звезда
3 фазы, 4 провода
 
208 В между фазами

120 В между фазами

Показывает заземление оборудования

Используйте сетевой фильтр AG2083C3
120
208 В, 3 фазы, звезда
Intermatic
AG208C3 Всплеск
208 В 3 провода треугольник
3 Фаза 3 провода 208 Нет нейтрали

Фаза к фазе 208В

Увеличенное изображение 347
600 В, три фазы, звезда

600 В, фаза-фаза

347 В, фаза-нейтраль

Увеличенное изображение 347
600 В, три фазы, звезда

600 В между фазами

347 В между фазами

Показывает заземление оборудования

Использовать сетевой фильтр AG65033
347
600 В, трехфазный, звезда
Intermatic
AG65033 Защита от перенапряжения
Увеличенное изображение Три
Фаза 600 В

600 В между фазами

Без заземления системы

Показывает заземление оборудования

Увеличенное изображение Три
фаза 250 В

250 В на каждую линию

Без заземления

Используйте сетевой фильтр AG2403D3
  120-240
Высокая ножка Delta
Intermatic
Защита от перенапряжения AG2403C3

Черная линия к черной линии 240 В

Черная линия к нейтрали 120 В

Красная или оранжевая линия к нейтрали 208 В

Используйте сетевой фильтр AG2403C3
240-480
Высокая нога Дельта

фазы-фаза 48

Фаза A Фаза C Нейтральных 24

Фазы B высокой ноги на нейтральные 415V

Напряжения раза по сравнению с 120-240 высокой ножкой

На изображении показана первичная катушка треугольника и вторичная катушка треугольника высокой ветви внутри трансформатора
Прочтите о трансформаторах
Первичная катушка (или обмотка) подключена к стороне выработки электроэнергии.
Вторичная катушка подключена к служебным проводам, питающим служебную
щитовые и автоматические выключатели.
Конфигурация показывает первичную катушку Delta. И вторичная катушка треугольника высокого плеча.

Если
вторичная обмотка внутри трансформатора намотана по схеме треугольник,
нет точки, в которой можно создать равный потенциал между линией и
нейтральный.
Обмотка средней точки S3 имеет отвод, что дает 120В или 208В в сеть.
S1 и S2 не могут выдерживать нагрузку 120 Вольт.
Как
в результате катушка S3 используется для всех нагрузок 120 В, плюс 1/3 всех
3-фазные нагрузки, вызывающие потенциальный дисбаланс.
Нагрузки 120 В не должны
превышать 5% КВА
дикая ветвь, или ветвь B, или фаза B, обозначена как вторичная B и отмечена оранжевой точкой.
так как оранжевый провод подключается к этой ноге

Читать

Увеличенное изображение 277
480 В Однофазный

С заземлением оборудования

Используйте устройство защиты от перенапряжения AG48013
277
480 Вольт Однофазный
Intermatic
AG48013 Всплеск
Домашнее хозяйство
электропроводка
120 В, однофазное и 240 В, двухфазное

Целиком
защита от перенапряжения для дома
Увеличенное изображение
Intermatic IG1240RC3 от перенапряжения для всего дома
протектор/ pdf
Защитить
твой
бизнес/ Защитить панель автоматического выключателя и цепи 120В и 240В/
Защитите свой безрезервуарный водонагреватель и любой водонагреватель с
электроника
Устанавливается непосредственно в панель выключателя/ заменяется после каждого случая
Защищает автоматические выключатели, главную панель, электропроводку, электронику,
электроприборы
Не защищает телевизоры, подключенные к спутниковой антенне/ для телевизоров используют перенапряжение
протектор с коаксиальным разъемом TV

Бытовая электропроводка

Бытовая электропроводка

3-фазная проводка для чайников – Понимание соединений двигателя – Electric Hut

Трехфазные системы чрезвычайно распространены в промышленных и коммерческих условиях. Их также можно найти в крупных жилых комплексах и в приборах, требующих большого количества энергии. Хотя поначалу эти системы могут показаться пугающими, пошаговое руководство по 3-фазной проводке для чайников поможет прояснить всю ситуацию.

В разных регионах могут использоваться разные напряжения, частоты и требования к системам электроснабжения. Тем не менее, все они согласны с тем, что три фазы являются оптимальным числом для подачи наибольшего количества энергии при наименьшем количестве проводников.Таким образом, очень важно знать, как работать, и уметь устранять неполадки в различных системах, требующих таких подключений.

Когда мы говорим о трех фазах, мы всегда подразумеваем, что мы работаем с переменным током (AC) . Электрический термин AC просто означает, что ток будет менять направление потока. Частота тока будет определять, сколько раз поток будет чередоваться в секунду. Переменный ток находится в домашних розетках и используется для большинства бытовых приборов в вашем доме. Имейте в виду, что многие из них преобразуют переменный ток в постоянный ток внутри.

Любой прибор будет иметь ряд параметров, связанных с его электрическими свойствами. Этими параметрами являются напряжение, ток и мощность. О напряжении можно говорить как об имеющемся напряжении электричества. Типичный дом обеспечивает 110 или 220 вольт в зависимости от того, где вы живете. Ток измеряется в амперах и представляет собой скорость потока электронов в проводнике. Требуемый ток зависит от прибора.

Трехфазная система – это просто система, которая будет иметь три проводника , по которым будет проходить ток и иметь определенное напряжение. В зависимости от источника эта система может также иметь нейтральный провод для возврата тока обратно в трансформатор.

Чаще всего трехфазное питание используется для двигателей. Он обеспечивает уникальную функцию, которая представляет собой вращающееся поле для вращения двигателя без необходимости в цепи стартера. Это достигается за счет того, что каждая из трех фаз имеет разное смещение.Проще говоря, ток меняется в разное время.

Когда обмотки двигателя получают ток, они создают магнитное поле, которое толкает их к следующей обмотке статора. По мере того, как ток меняется, двигатель продвигается все дальше и дальше.

С практической точки зрения, трехфазный двигатель должен быть подключен в одной из конфигураций, описанных на его лицевой панели.

Трехфазный двигатель должен быть подключен в соответствии со схемой на лицевой панели.

Первый шаг — выяснить напряжение ваших фаз.В Соединенных Штатах для двигателей низкого напряжения (ниже 600 В) вы можете рассчитывать на 230 В или 460 В. При этом есть широкий выбор разных моторов и то, что у вас есть под рукой, может быть совершенно разным. Убедитесь, что напряжение, которое вы будете подавать на двигатель, соответствует характеристикам, указанным на лицевой панели.

Отключите питание двигателя и откройте крышку, закрывающую клеммы. Здесь вы найдете либо пронумерованные провода с гайками, либо набор винтовых клемм.Тип разъемов будет зависеть от производителя и размера двигателя. Найдите схему подключения двигателя на лицевой панели или внутри снятой крышки.

Как правило, у вас будет две отдельные диаграммы. Один будет для низковольтных, а другой для высоковольтных соединений. В зависимости от напряжения, которое вы измерили на первом этапе, следует выбрать соответствующую диаграмму. Обратите внимание, что подключение двигателя к напряжению, отличному от того, на которое он рассчитан, может привести к необратимому повреждению.

Выполните указанные соединения и закрепите клеммы на месте. Закройте крышку двигателя и включите питание. В это время у вас должен быть полностью функциональный трехфазный двигатель.

Подключение любой другой трехфазной системы выполняется точно так же. У вас должно быть три отдельных клеммы или провода, выходящие из системы, что позволит вам выполнить соединение. Подведите фазу к каждому терминалу, и у вас должно быть питание в системе.

Объяснение трехфазного питания | Объяснение трехфазного питания

В этом видео подробно рассматривается трехфазное питание и объясняется, как оно работает.Трехфазную электроэнергию можно определить как общий метод производства, передачи и распределения электроэнергии переменного тока. Это тип многофазной системы, который является наиболее распространенным методом, используемым электрическими сетями во всем мире для передачи энергии.

 

 Дополнительные ресурсы Raritan


Расшифровка:
Добро пожаловать в этот анимационный видеоролик, в котором кратко рассказывается о трехфазном питании. Я также объясню тайну, почему 3 линии электропередач находятся на расстоянии 120 градусов друг от друга, потому что это важная часть для понимания 3-фазного питания.

Электроэнергия, поступающая в центр обработки данных, обычно представляет собой 3-фазную сеть переменного тока, что означает 3-фазную мощность переменного тока.

Давайте рассмотрим упрощенный пример того, как генерируется трехфазное питание.

Этот пример отличается от того, что я использовал для описания того, как трехфазный двигатель использует мощность. В видео с переменным током мы показали, как вращение магнита вокруг одного провода заставляет ток течь туда и обратно. Теперь мы пропустим магнит через 3 провода и посмотрим, как это повлияет на ток в каждом проводе.

В этом трехфазном примере северный положительный конец магнита направлен прямо вверх на первую линию.

Чтобы упростить объяснение концепции, давайте воспользуемся циферблатом и скажем, что первая линия находится в положении «двенадцать часов». Электроны в линии 1 будут течь к северному полюсу магнита. Что произойдет, если магнит повернется на 90 градусов?

Как мы видели на видео с переменным током, поскольку магнит перпендикулярен линии 1, электроны в линии 1 перестанут двигаться. Затем, когда магнит повернется более чем на 90 градусов, южный полюс магнита приблизится к первой линии, и электроны изменятся на противоположные, что означает, что направление тока изменится на противоположное. Об этом было подробно рассказано в видео о переменном токе. Если вы нажали на это видео, не имея полного представления о переменном токе, сначала просмотрите это видео.

Глядя на диаграмму, вы можете понять, почему я выбрал аналоговый циферблат. Круг равен 360 градусам, и часы делят круг на 12 частей, так что каждый час покрывает 30 градусов круга.Переход от 12 к 3 составляет 90 градусов, а переход от 12 к 4 — 120 градусов.

При 3-фазном электроснабжении медные линии располагаются под углом 120 градусов друг к другу. Итак, когда вы находитесь в положении «четыре часа» в нашем примере, это 120 градусов от первой линии. А положение «8 часов» находится на 120 градусов от положений «4 часа» и «12 часов». 3 линии равномерно распределены по кругу.

Если северный полюс находится ближе к одному из 3-х проводов, то электроны движутся в этом направлении. Чем ближе южный полюс подходит к каждому проводу, тем больше электроны удаляются от южного полюса. В каждой из этих трех линий электроны движутся вперед и назад, но они не всегда движутся в том же направлении или с той же скоростью, что и две другие линии.

Давайте снова посмотрим на пример. Когда магнит вращается, когда северный полюс находится в положении 1 час, он становится перпендикулярным линии 2, поэтому, конечно, электроны перестают двигаться по линии 2. Но они все еще движутся по линии 1, притягиваясь к более близкому северному полюсу, и они двигаются по линии 3, отталкиваясь от южного полюса.Когда северный полюс магнита повернут на 2 часа, на линию 1 и [линию] 2 влияет северный полюс, но южный полюс находится прямо напротив линии 3, поэтому теперь он имеет пиковый ток. В 3 часа магнит перпендикулярен линии 1, поэтому электроны перестают двигаться, но на линию 2 влияет северный полюс, а на линию 3 — южный полюс, поэтому ток течет по линиям 2 и 3.

Будем надеяться , этот пример показывает вам, как в любое время ток всегда течет как минимум по 2 линиям. Он также показывает взаимосвязь между тремя линиями, когда магнит вращается по кругу.Когда магнит движется вокруг циферблата, на каждую из трех линий будет влиять либо северный, либо южный полюс, за исключением случаев, когда магнит перпендикулярен линии.

Давайте сосредоточимся на линии 1. Она достигает своего пикового значения, когда северный полюс указывает на 12-часовую и 6-часовую позиции. Это при нулевом токе, когда северный полюс указывает на 3 и 9 часов. Только 1 из 3 линий всегда находится на пике, но поскольку линий 3, для каждого цикла есть 3 положительных пика и 3 отрицательных пика.В 6 различных положениях на циферблате одна из линий находится на пике. Позиции 12 и 6 — чередующиеся пики линии 1, позиции 2 и 8 — чередующиеся пики линии 3, а позиции 4 и 10 — чередующиеся пики линии 2.

Теперь давайте объясним эти запутанные формы сигналов, которые часто используются для изображения трех фаз. Если вы посмотрите на пример сигнала, вы увидите, что первая линия выделена синим цветом, и она начинается с нуля. Это означает, что магнит перпендикулярен этой линии. Когда магнит движется, вы можете видеть, что ток достигает своего пика.Затем, когда положительный полюс проходит мимо этого провода, ток начинает ослабевать, пока магнит снова не станет перпендикулярным, что приводит к нулевому току. Когда отрицательный полюс начинает приближаться, ток меняет направление и движется в другом направлении к другому пику, прежде чем вернуться к нулевому току. Это завершает 1 полный цикл для этой строки.

Чтобы двумерная диаграмма показывала взаимосвязь между линиями, теперь на ней показан промежуток, который означает время, необходимое магниту, чтобы повернуться на 120 градусов.Это когда красная линия находится на нулевом токе. По мере того, как магнит продолжает вращаться, красная линия будет двигаться к своему пиковому положительному току, а затем вернется к нулю, после чего ток изменит направление. График также показывает, что третья линия начинается при нулевом токе через 120 градусов после второй линии. Итак, если вы посмотрите на эти 3 линии, вы увидите, что, когда одна линия находится на пике, другие 2 линии все еще генерируют ток, но не в полную силу, то есть они не на пике. Так как электроны текут от положительного пика к отрицательному, ток отображается как текущий от положительных значений к отрицательным.Помните, что положительные и отрицательные стороны не исключают друг друга. Положительная и отрицательная коннотация используется только для описания того, как чередуется ток.

В трехфазной цепи вы обычно берете одну из трех токоведущих линий и подключаете ее к другой из трех токоведущих линий. Одно исключение из этого описано в видео «Дельта против звезды».

В качестве примера возьмем 3-фазную линию 208 вольт. Каждая из трех линий будет иметь напряжение 120 вольт. Если вы посмотрите на график, вы легко увидите выходную мощность любых двух линий.Если одна линия находится на пике, другая линия не находится на пике. Вот почему в трехфазной цепи неправильно умножать 120 вольт на 2, чтобы получить 240 вольт.

Итак, если вам интересно, почему у вас дома есть 110/120 вольт для ваших обычных розеток, но у вас также есть приборы на 220/240 вольт, что дает? Ну, это не трехфазное питание. На самом деле это 2 однофазные линии.

Итак, как рассчитать мощность объединения двух линий в трехфазной цепи? Формула представляет собой вольт, умноженный на квадратный корень из 3, который округляется до 1.732. Для 2 линий по 120 вольт, расчет для этого равен 120 вольт, умноженный на 1,732, и результат округлен до 208 вольт.

Вот почему мы называем это трехфазной цепью на 208 В или трехфазной линией на 208 В. Трехфазная цепь на 400 вольт означает, что каждая из 3 линий несет 230 вольт.

Последняя тема, о которой я расскажу в этом видео: почему компании и центры обработки данных используют 3 фазы?

Прямо сейчас позвольте мне дать вам простой обзор. Для трехфазной сети вы соединяете линию 1 с линией 2 и получаете 208 вольт.В то же время вы [можете] подключить линию 2 к линии 3 и получить 208 вольт. И вы [можете] соединить линию 3 с линией 1 и получить 208 вольт. Если провод способен подавать 30 ампер, то передаваемая мощность составляет 208 вольт, умноженных на 30 ампер, умноженных на 1,732, что дает общую доступную мощность 10,8 кВА.

Для сравнения, для однофазной цепи на 30 ампер с напряжением 208 вольт вы получите только 6,2 кВА. По сути, 3 фазы обеспечивают большую мощность.

Существуют и другие факторы, по которым гораздо лучше подавать трехфазное питание к стойке центра обработки данных, а не использовать однофазное питание, и эти факторы обсуждаются в видео о вольтах и ​​амперах, а также в видео 208 и 400 вольт.

Трехфазные конфигурации «звезда» и «треугольник» | Многофазные цепи переменного тока

Трехфазное соединение звездой (Y)

Первоначально мы исследовали идею трехфазных энергосистем путем соединения трех источников напряжения вместе в так называемой конфигурации «Y» (или «звезда»).

Эта конфигурация источников напряжения характеризуется общей точкой подключения, соединяющей одну сторону каждого источника. (Рисунок ниже)

 

Трехфазное соединение «звезда» имеет три источника напряжения, подключенных к общей точке.

 

Если мы нарисуем схему, показывающую, что каждый источник напряжения представляет собой катушку с проводом (обмотка генератора переменного тока или трансформатора), и немного изменим расположение, конфигурация «Y» станет более очевидной на рисунке ниже.

 

Трехфазное четырехпроводное соединение «звезда» использует «общий» четвертый провод.

 

Три проводника, ведущие от источников напряжения (обмоток) к нагрузке, обычно называются линиями , а сами обмотки обычно называются фазами .

В системе с Y-образным соединением может быть или не быть (рисунок ниже) нейтральный провод, прикрепленный к точке соединения посередине, хотя это, безусловно, помогает смягчить потенциальные проблемы, если один элемент трехфазной нагрузки выйдет из строя, поскольку обсуждалось ранее.

 

Трехфазное трехпроводное соединение «звезда» не использует нейтральный провод.

 

Значения напряжения и тока в трехфазных системах

Когда мы измеряем напряжение и ток в трехфазных системах, нам нужно указать , где мы измеряем .

Линейное напряжение относится к величине напряжения, измеренного между любыми двумя линейными проводниками в сбалансированной трехфазной системе. С приведенной выше схемой напряжение сети составляет примерно 208 вольт.

Фазное напряжение относится к напряжению, измеренному на любом одном компоненте (обмотка источника или полное сопротивление нагрузки) в сбалансированном трехфазном источнике или нагрузке.

Для показанной выше схемы фазное напряжение составляет 120 вольт. Термины линейный ток и фазный ток следуют одной и той же логике: первый относится к току через любой один линейный провод, а второй к току через любой компонент.

Источники и нагрузки, соединенные звездой, всегда имеют линейные напряжения выше фазных, а линейные токи равны фазным токам. Если Y-образный источник или нагрузка сбалансированы, линейное напряжение будет равно фазному напряжению, умноженному на квадратный корень из 3:

 

 

Однако конфигурация «Y» не является единственно допустимой для соединения вместе трехфазного источника напряжения или элементов нагрузки.

Трехфазная конфигурация треугольника (Δ)

Другая конфигурация известна как «Дельта» из-за ее геометрического сходства с одноименной греческой буквой (Δ).Обратите внимание на полярность каждой обмотки на рисунке ниже.

 

Трехфазное трехпроводное соединение треугольником без общего.

 

На первый взгляд кажется, что три подобных источника напряжения создадут короткое замыкание, и электроны будут течь по треугольнику, сдерживая их только внутренним сопротивлением обмоток.

Однако из-за фазовых углов этих трех источников напряжения это не так.

Закон Кирхгофа о напряжении в соединениях треугольником

Чтобы быстро проверить это, можно использовать закон Кирхгофа о напряжении, чтобы увидеть, равна ли сумма трех напряжений в контуре нулю. Если они это сделают, то не будет напряжения, доступного для проталкивания тока по этой петле, и, следовательно, не будет циркулирующего тока.

Начиная с верхней обмотки и продвигаясь против часовой стрелки, наше выражение KVL выглядит примерно так:

 

 

Действительно, если мы сложим вместе эти три векторные величины, они дадут в сумме ноль.Другой способ проверить тот факт, что эти три источника напряжения могут быть соединены вместе в петлю без возникновения циркулирующих токов, состоит в том, чтобы разомкнуть петлю в одной точке соединения и рассчитать напряжение на разрыве: (рисунок ниже)

 

Напряжение на открытом ∆ должно быть равно нулю.

 

Начиная с правой обмотки (120 В ∠ 120°) и двигаясь против часовой стрелки, наше уравнение KVL выглядит следующим образом:

 

 

Конечно же, на разрыве будет нулевое напряжение, что говорит нам о том, что ток не будет циркулировать в треугольной петле обмоток, когда это соединение будет завершено.

Установив, что трехфазный источник напряжения, соединенный Δ, не сгорит дотла из-за блуждающих токов, обратимся к его практическому использованию в качестве источника питания в трехфазных цепях.

Поскольку каждая пара линейных проводников подключена непосредственно к одной обмотке в схеме треугольника, линейное напряжение будет равно фазному напряжению.

И наоборот, поскольку каждый линейный проводник присоединяется к узлу между двумя обмотками, линейный ток будет векторной суммой токов двух соединяющих фаз.

Неудивительно, что результирующие уравнения для Δ-конфигурации выглядят следующим образом:

 

 

Анализ схемы примера соединения треугольником

Давайте посмотрим, как это работает на примере схемы: (Рисунок ниже)

 

Нагрузка на источник Δ подключена в Δ.

 

При каждом нагрузочном сопротивлении, получающем 120 вольт от соответствующей фазной обмотки в источнике, ток в каждой фазе этой цепи будет равен 83.33 ампера:

 

 

Преимущества трехфазной системы Delta

Таким образом, каждый линейный ток в этой трехфазной энергосистеме равен 144,34 ампер, что значительно больше, чем линейный ток в Y-системе, которую мы рассматривали ранее.

Можно задаться вопросом, не потеряли ли мы здесь все преимущества трехфазного питания, учитывая тот факт, что у нас такие большие токи в проводниках, что требует более толстых и дорогих проводов.

Нет. Хотя для этой цепи потребуются три медных проводника калибра номер 1 (на расстоянии 1000 футов между источником и нагрузкой это соответствует чуть более 750 фунтам меди для всей системы), это все же меньше, чем 1000+ фунтов меди, необходимых для однофазная система, обеспечивающая ту же мощность (30 кВт) при том же напряжении (120 вольт между проводниками).

Одним из явных преимуществ системы с Δ-соединением является отсутствие нулевого провода. В системе с Y-образным соединением нейтральный провод был необходим на случай, если одна из фазных нагрузок выйдет из строя (или будет отключена), чтобы предотвратить изменение фазных напряжений на нагрузке.

В этом нет необходимости (и даже невозможно!) в схеме с Δ-связью.

При непосредственном подключении каждого элемента фазы нагрузки к соответствующей обмотке фазы источника фазное напряжение будет постоянным независимо от обрывов в элементах нагрузки.

Пожалуй, самым большим преимуществом дельта-подключенного источника является его отказоустойчивость.

Одна из обмоток в трехфазном источнике, соединенном по схеме треугольника, может разомкнуться (рисунок ниже), не влияя на напряжение или ток нагрузки!

 

Даже при выходе из строя обмотки источника напряжение сети по-прежнему составляет 120 В, а напряжение фазы нагрузки по-прежнему составляет 120 В. Единственным отличием является дополнительный ток в остальных функциональных обмотках источника.

 

Единственным последствием размыкания обмотки источника для Δ-соединенного источника является увеличение фазного тока в остальных обмотках. Сравните эту отказоустойчивость с системой с Y-образным соединением, имеющей обмотку с открытым истоком на рисунке ниже.

 

Обмотка открытого источника «Y» уменьшает вдвое напряжение на двух нагрузках, соединенных треугольником.

 

При нагрузке, подключенной по схеме Δ, на двух сопротивлениях снижается напряжение, а на одном остается исходное линейное напряжение, 208.Нагрузка, подключенная по схеме Y, постигнет еще худшая участь (рисунок ниже) с таким же отказом обмотки в источнике, подключенном по схеме Y.

 

Обмотка с открытым исходным кодом системы «Y-Y» снижает вдвое напряжение на двух нагрузках и полностью теряет одну нагрузку.

 

В этом случае два сопротивления нагрузки испытывают пониженное напряжение, а третье полностью теряет напряжение питания! По этой причине для надежности предпочтительнее источники с Δ-подключением.

Однако, если требуется двойное напряжение (например,грамм. 120/208) или предпочтительнее для меньших линейных токов, системы с Y-образным соединением являются предпочтительной конфигурацией.

 

ОБЗОР:

  • Проводники, подключенные к трем точкам трехфазного источника или нагрузки, называются линиями .
  • Три компонента, составляющие трехфазный источник или нагрузку, называются фазами .
  • Линейное напряжение — это напряжение, измеренное между любыми двумя линиями в трехфазной цепи.
  • Фазное напряжение — это напряжение, измеренное на одном компоненте трехфазного источника или нагрузки.
  • Линейный ток — это ток в любой одной линии между трехфазным источником и нагрузкой.
  • Фазный ток — это ток через любой компонент, состоящий из трехфазного источника или нагрузки.
  • В сбалансированных Y-образных цепях линейное напряжение равно фазному напряжению, умноженному на квадратный корень из 3, а линейный ток равен фазному току.
  • В симметричных Δ-цепях линейное напряжение равно фазному напряжению, а линейный ток равен фазному току, умноженному на квадратный корень из 3.
  • Трехфазные источники напряжения, соединенные треугольником, обеспечивают большую надежность в случае повреждения обмотки, чем источники, соединенные звездой. Однако источники с Y-образным соединением могут отдавать такое же количество энергии при меньшем линейном токе, чем источники с Δ-соединением.

СВЯЗАННЫЕ РАБОЧИЕ ТАБЛИЦЫ:

Однофазный по сравнению с однофазнымТрехфазное питание Пояснение

В электроэнергетике фаза относится к распределению нагрузки. Чем отличаются однофазные и трехфазные источники питания? Однофазная мощность представляет собой двухпроводную цепь питания переменного тока (ac). Как правило, имеется один силовой провод — фазный провод — и один нейтральный провод, при этом ток течет между силовым проводом (через нагрузку) и нейтральным проводом. Трехфазное питание представляет собой трехпроводную цепь питания переменного тока, в которой сигнал каждой фазы переменного тока находится на расстоянии 120 электрических градусов друг от друга.

Жилые дома обычно снабжаются однофазным источником питания, в то время как коммерческие и промышленные объекты обычно используют трехфазное питание. Одно ключевое различие между однофазным и трехфазным питанием заключается в том, что трехфазный источник питания лучше выдерживает более высокие нагрузки. Однофазные источники питания чаще всего используются, когда типичными нагрузками являются освещение или отопление, а не большие электродвигатели.

Однофазные системы могут быть получены из трехфазных систем. В США это делается через трансформатор для получения надлежащего напряжения, а в ЕС это делается напрямую.Уровни напряжения в ЕС таковы, что трехфазная система может также служить тремя однофазными системами.

Однофазное и трехфазное питание

Еще одно важное различие между трехфазным и однофазным питанием заключается в постоянстве подачи питания. Из-за пиков и провалов напряжения однофазный источник питания просто не обеспечивает такой стабильности, как трехфазный источник питания. Трехфазный источник питания обеспечивает постоянную мощность с постоянной скоростью.

При сравнении однофазного и трехфазного питания трехфазные источники питания более эффективны. Трехфазный источник питания может передавать в три раза больше энергии, чем однофазный источник питания, при этом требуется только один дополнительный провод (то есть три провода вместо двух). Таким образом, трехфазные источники питания, независимо от того, имеют ли они три или четыре провода, используют меньше материала проводника для передачи заданного количества электроэнергии, чем однофазные источники питания.

Разница между трехфазной и однофазной конфигурациями

В некоторых трехфазных источниках питания используется четвертый провод, который является нейтральным проводом.Две наиболее распространенные конфигурации трехфазных систем известны как звезда и треугольник. Конфигурация треугольника имеет только три провода, а конфигурация звезда может иметь четвертый, нейтральный провод. Однофазные источники питания также имеют нулевой провод.

Как однофазные, так и трехфазные системы распределения электроэнергии имеют функции, для которых они хорошо подходят. Но эти два типа систем сильно отличаются друг от друга.

Статьи по теме

Узнайте больше об анализаторах качества электроэнергии.

Цвета электрических проводов — Фаза 3 США

Стандарт цветового кодирования электрических проводов для трехфазных электрических приложений стандартизирован для облегчения идентификации отдельных фаз проводов. Цветовые коды проводки для цепей распределения питания переменного и постоянного тока неоднократно менялись и различаются в зависимости от региона. Для трехфазного электроснабжения в цепях будет использоваться пять проводов: провод заземления, нулевой провод, провод под напряжением, провод линии 2, электрический провод линии 3. В этой статье подробно описаны следующие цветовые коды кабелей:

— Международные цвета проводки
— Цветовые коды проводки США
— Старые и новые цвета проводки Великобритании страны. В США есть свои цвета проводки для электрических цепей: черный, красный и синий используются для трехфазного напряжения 208 В переменного тока; коричневый, оранжевый и желтый используются для 480 В переменного тока. В Австралии также есть другой стандарт цвета проводки. Новые цвета кабелей для вилок в Великобритании теперь согласованы с европейскими цветами силовых кабелей переменного и постоянного тока. Большая часть Европы соблюдает коды цветов электропроводки IEC («Международная электротехническая комиссия») для ответвленных цепей переменного тока.

*США (LV) Следует использовать для 3-ФАЗНОГО НАПРЯЖЕНИЯ 120/208 В переменного тока.

*США (ВН) Следует использовать для 3-ФАЗНОГО НАПРЯЖЕНИЯ 277/480 В переменного тока.

В США цветовые коды обычно используются для силовых проводов в «отводных цепях», проводке между последним защитным устройством.

Эти типы цветов проводов обычно используются в домашних и офисных условиях.

Фаза 1 — черный

Фаза 2 — красный

Фаза 3 — синий Нейтраль — белый Земля — зеленый, зеленый с желтой полосой или оголенный провод

Если одна фаза вашей проводки находится под более высоким напряжением, чем другие, используйте высоковольтное подключение, для этой фазы провода должны быть маркированы оранжевым цветом. Соединения с высокой ветвью обычно редко встречаются в новых установках.

Промышленные двигатели и оборудование обычно имеют системы более высокого напряжения. Фаза 1 — коричневый Фаза 2 — оранжевый Фаза 3 — желтый Нейтральный — серый Заземление — зеленый, зеленый с желтой полосой или оголенный провод

Очень важно иметь задокументированную систему маркировки проводов для систем высокого напряжения. Этикетки должны содержать информацию о цепи и соответствующую точку отключения для блокировки/маркировки.

Постоянный или постоянный ток обычно используется в аккумуляторных системах и системах солнечной энергии вместо переменного или переменного тока.Положительный (незаземленный) — красный Отрицательный (незаземленный) — черный Заземление — белый или серый

Силовые кабели в Европе и Великобритании идентифицируются по стандартному цветовому кодированию силовых кабелей.

 

Функция нейтрального провода в 3-фазной 4-проводной системе

В этой статье я обсуждаю функцию 3 нейтрального провода в фазе 4 проводной системы . Прочитав эту статью, вы сможете понять некоторые очень удивительные факты о необходимости нейтрального провода в трехфазной системе распределения.

Электроэнергия от генерирующих станций передается на большие расстояния по линиям электропередач на различные приемные станции. Затем мощность распределяется по различным подстанциям, расположенным в разных местах и ​​населенных пунктах. В конечном итоге напряжение снижается до 400/230 вольт, то есть 400 вольт для оптовых потребителей и 230 вольт для обычных бытовых потребителей.
 
Соединения обмоток трансформаторов, установленных на подстанции, выполнены треугольником на первичной стороне и звездой на вторичной стороне.
 
Распределение, как правило, однофазное, двухпроводное и трехфазное, четырехпроводное. Напряжение между любым фазным проводом и нейтралью составляет 230 вольт, а между любым двухфазным проводом — 400 вольт.

Питание жилых домов, небольших офисов, магазинов и других помещений, требующих небольшой нагрузки, осуществляется от распределительной сети напряжением 230 вольт с помощью одной фазы и одного нулевого провода.
 
Там, где питание должно подаваться в крупные учреждения, такие как гостиницы, офисы, больницы, применяется трехфазная четырехпроводная система питания.Он состоит из трех фазных проводов и нейтрали.

Функция нейтрального провода в 3-фазной 4-проводной системе

Нулевой провод в 3-фазной 4-проводной системе служит обратным проводом для общей бытовой системы электроснабжения. Нейтраль соединена с каждой однофазной нагрузкой. Потенциал нейтральной точки можно очень хорошо понять из следующего рисунка.

На приведенной выше схеме генератор переменного тока подключен к нагрузке по трехфазной четырехпроводной системе. Нейтральные точки генератора и нагрузки соединены вместе.Нейтральный провод служит общим возвратом ко всем трем фазам, исходящим от N 1 .
 
Таким образом, общий ток нейтрали представляет собой векторную сумму токов трех линий. В сбалансированных условиях векторная сумма равна нулю, и, следовательно, ток нейтрали равен нулю. В этом случае не может быть и речи о падении напряжения на нейтрали, а потенциал N 2 такой же, как у N 1 .
 
Это ясно показывает, что если система питания будет преобразована в трехфазную трехпроводную систему, нейтральный проводник может быть удален без каких-либо изменений в распределении потенциала сети.В этом случае потенциал N 2 все равно будет равен потенциалу N 1 . Вот почему основная сеть передачи представляет собой трехпроводную систему.
 
Трехфазные нагрузки сбалансированы и не влияют на ток нейтрали, поэтому нейтральный проводник можно удалить.
 
Но баланс нагрузки по каждой фазе затруднителен в случае однофазных нагрузок. Из-за этого дисбаланса всегда протекает некоторый ток нейтрали. Поэтому нулевой провод в этом случае очень важен.

Балансировка фаз в 3-фазной 4-проводной системе

Балансировка фаз означает равномерное распределение однофазных осветительных нагрузок по 3-фазным 4-проводным проводам питающей линии таким образом, чтобы линейные токи на всех фазах были приблизительно равными.
 
Разница в нагрузке вызовет несимметричный ток, протекающий через нейтральный провод. Полное сопротивление трех проводников будет одинаковым, и неравный ток, протекающий по ним, приведет к неравным падениям напряжения с возможностью несимметрии напряжений на нагрузках.Однако добиться абсолютно равного распределения в таких случаях невозможно и в результате может существовать небольшой ток в нейтрали.
 
Чтобы получить достаточно равномерное распределение нагрузки в трехфазных проводах, жилые здания должны быть подключены последовательно, если трехфазное питание подается на большие здания, такие как гостиницы, школы, коммерческие здания и т. д., важно, чтобы равномерное распределение нагрузки на все фазы должно быть основной целью .
 
«Балансировка» обеспечивает наиболее эффективное использование генератора и трансформатора.Например, трансформатор мощностью 100 кВА может удовлетворительно воспринимать однофазную нагрузку 33,3 кВА на каждой из своих фаз. Если он подключен только к одной фазе питания, он будет перегружен.

Почему нейтраль заземлена?

Назначение заземления нейтрали показано на рисунке.

На рисунке А показан трансформатор 11 кВ / 230 В, питаемый от линии 11 кВ. Вторичная обмотка этого трансформатора в этом случае не заземлена.
 
При нарушении изоляции между обмотками ВТ и НН по какой-либо причине на клеммах 230 В трансформатора появится напряжение питания 11 кВ.Это будет очень опасная ситуация как для оборудования, подключенного к этой линии, так и для оператора.
 
Теперь посмотрите на рисунок B, вторичная обмотка трансформатора в этом случае заземлена. Если на клеммах вторичной обмотки появится напряжение 11 кВ, то по пути, показанному на рисунке, потечет чрезмерный ток, и предохранитель перегорит.
 
Следовательно заземление нейтрального провода распределительного трансформатора на подстанции очень необходимо с точки зрения безопасности .

Напряжение между нейтралью и землей

Между нейтралью и землей может существовать очень низкое напряжение, так как нейтраль на подстанции жестко соединена с землей, и оно может возрасти, если заземление подстанции не работает должным образом.
 
При неисправных условиях, например, предохранитель или автоматический выключатель, защищающий фидер, не срабатывает в случае замыкания на землю на одной из линий, нейтраль может иметь гораздо более высокий потенциал по отношению к земле.
 
В таких условиях произойдет сильное падение напряжения на земле подстанции из-за тока короткого замыкания, что может привести к серьезному поражению электрическим током.

Что происходит при отключении нейтрального провода?

Когда нейтральный провод в 3-фазной, 4-проводной системе отключен, нагрузки, которые подключены между любыми двумя линейными проводами и нейтралью, подключаются последовательно, и разность потенциалов на комбинированной нагрузке становится равной линейному напряжению. . Разность потенциалов на каждой нагрузке изменяется в соответствии с номиналом нагрузки.
 
Иллюстрация : Эффект отключения нейтрального провода в 3-фазной 4-проводной системе можно более четко объяснить на следующем рисунке:

Предположим, что сопротивление 100 Ом подключено между фазой R и нейтралью, а сопротивление 50 Ом подключено между фазой Y и нейтралью в 3-фазном 4-проводном источнике питания, как показано на рисунке (a).Упрощенная схема показана на рисунке (b).

Если нейтральный провод отключен, две нагрузки R 1 и R 2 включаются последовательно, и разность потенциалов на них становится равной напряжению сети, т.е. 400 В.
Следовательно,
ток через нагрузки, I = V L / (R 1 + R 2 )
= 400 / (100 + 50) = 2,67 A
Следовательно,
Разница потенциалов на сопротивление R 1 = I * R 1
= 2.67*100 = 267 В
 
Аналогично, 
разность потенциалов на сопротивлении R 2 = I*R 2
                              при отключении в 3-фазной 4-проводной системе разность потенциалов на нагрузке с высоким омическим сопротивлением увеличивается, а разность потенциалов на нагрузке с низким омическим сопротивлением уменьшается.

Добавить комментарий